Aromātai
\frac{162}{25}=6.48
Tauwehe
\frac{2 \cdot 3 ^ {4}}{5 ^ {2}} = 6\frac{12}{25} = 6.48
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{27\times 5}{3}}{125}\times \frac{-4}{3}\times 9\times \frac{-3}{2}
Tuhia te 27\times \frac{5}{3} hei hautanga kotahi.
\frac{\frac{135}{3}}{125}\times \frac{-4}{3}\times 9\times \frac{-3}{2}
Whakareatia te 27 ki te 5, ka 135.
\frac{45}{125}\times \frac{-4}{3}\times 9\times \frac{-3}{2}
Whakawehea te 135 ki te 3, kia riro ko 45.
\frac{9}{25}\times \frac{-4}{3}\times 9\times \frac{-3}{2}
Whakahekea te hautanga \frac{45}{125} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{9}{25}\left(-\frac{4}{3}\right)\times 9\times \frac{-3}{2}
Ka taea te hautanga \frac{-4}{3} te tuhi anō ko -\frac{4}{3} mā te tango i te tohu tōraro.
\frac{9\left(-4\right)}{25\times 3}\times 9\times \frac{-3}{2}
Me whakarea te \frac{9}{25} ki te -\frac{4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-36}{75}\times 9\times \frac{-3}{2}
Mahia ngā whakarea i roto i te hautanga \frac{9\left(-4\right)}{25\times 3}.
-\frac{12}{25}\times 9\times \frac{-3}{2}
Whakahekea te hautanga \frac{-36}{75} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{-12\times 9}{25}\times \frac{-3}{2}
Tuhia te -\frac{12}{25}\times 9 hei hautanga kotahi.
\frac{-108}{25}\times \frac{-3}{2}
Whakareatia te -12 ki te 9, ka -108.
-\frac{108}{25}\times \frac{-3}{2}
Ka taea te hautanga \frac{-108}{25} te tuhi anō ko -\frac{108}{25} mā te tango i te tohu tōraro.
-\frac{108}{25}\left(-\frac{3}{2}\right)
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
\frac{-108\left(-3\right)}{25\times 2}
Me whakarea te -\frac{108}{25} ki te -\frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{324}{50}
Mahia ngā whakarea i roto i te hautanga \frac{-108\left(-3\right)}{25\times 2}.
\frac{162}{25}
Whakahekea te hautanga \frac{324}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}