Aromātai
\frac{1936}{3}\approx 645.333333333
Tauwehe
\frac{2 ^ {4} \cdot 11 ^ {2}}{3} = 645\frac{1}{3} = 645.3333333333334
Tohaina
Kua tāruatia ki te papatopenga
2\left(484\times 1-1\times \frac{1}{3}\left(22^{2}+\sqrt{22^{2}\times \left(0\times 75\right)^{2}}+\left(0\times 75\right)^{2}\right)\right)
Whakareatia te 22 ki te 22, ka 484.
2\left(484-1\times \frac{1}{3}\left(22^{2}+\sqrt{22^{2}\times \left(0\times 75\right)^{2}}+\left(0\times 75\right)^{2}\right)\right)
Whakareatia te 484 ki te 1, ka 484.
2\left(484-\frac{1}{3}\left(22^{2}+\sqrt{22^{2}\times \left(0\times 75\right)^{2}}+\left(0\times 75\right)^{2}\right)\right)
Whakareatia te 1 ki te \frac{1}{3}, ka \frac{1}{3}.
2\left(484-\frac{1}{3}\left(484+\sqrt{22^{2}\times \left(0\times 75\right)^{2}}+\left(0\times 75\right)^{2}\right)\right)
Tātaihia te 22 mā te pū o 2, kia riro ko 484.
2\left(484-\frac{1}{3}\left(484+\sqrt{484\times \left(0\times 75\right)^{2}}+\left(0\times 75\right)^{2}\right)\right)
Tātaihia te 22 mā te pū o 2, kia riro ko 484.
2\left(484-\frac{1}{3}\left(484+\sqrt{484\times 0^{2}}+\left(0\times 75\right)^{2}\right)\right)
Whakareatia te 0 ki te 75, ka 0.
2\left(484-\frac{1}{3}\left(484+\sqrt{484\times 0}+\left(0\times 75\right)^{2}\right)\right)
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
2\left(484-\frac{1}{3}\left(484+\sqrt{0}+\left(0\times 75\right)^{2}\right)\right)
Whakareatia te 484 ki te 0, ka 0.
2\left(484-\frac{1}{3}\left(484+0+\left(0\times 75\right)^{2}\right)\right)
Tātaitia te pūtakerua o 0 kia tae ki 0.
2\left(484-\frac{1}{3}\left(484+\left(0\times 75\right)^{2}\right)\right)
Tāpirihia te 484 ki te 0, ka 484.
2\left(484-\frac{1}{3}\left(484+0^{2}\right)\right)
Whakareatia te 0 ki te 75, ka 0.
2\left(484-\frac{1}{3}\left(484+0\right)\right)
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
2\left(484-\frac{1}{3}\times 484\right)
Tāpirihia te 484 ki te 0, ka 484.
2\left(484-\frac{484}{3}\right)
Whakareatia te \frac{1}{3} ki te 484, ka \frac{484}{3}.
2\times \frac{968}{3}
Tangohia te \frac{484}{3} i te 484, ka \frac{968}{3}.
\frac{1936}{3}
Whakareatia te 2 ki te \frac{968}{3}, ka \frac{1936}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}