Whakaoti mō x
x=2007-2\sqrt{502}\approx 1962.189286995
x=2\sqrt{502}+2007\approx 2051.810713005
Graph
Tohaina
Kua tāruatia ki te papatopenga
4028048-4014x+x^{2}=2007
Whakamahia te āhuatanga tuaritanga hei whakarea te 2008-x ki te 2006-x ka whakakotahi i ngā kupu rite.
4028048-4014x+x^{2}-2007=0
Tangohia te 2007 mai i ngā taha e rua.
4026041-4014x+x^{2}=0
Tangohia te 2007 i te 4028048, ka 4026041.
x^{2}-4014x+4026041=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4014\right)±\sqrt{\left(-4014\right)^{2}-4\times 4026041}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4014 mō b, me 4026041 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4014\right)±\sqrt{16112196-4\times 4026041}}{2}
Pūrua -4014.
x=\frac{-\left(-4014\right)±\sqrt{16112196-16104164}}{2}
Whakareatia -4 ki te 4026041.
x=\frac{-\left(-4014\right)±\sqrt{8032}}{2}
Tāpiri 16112196 ki te -16104164.
x=\frac{-\left(-4014\right)±4\sqrt{502}}{2}
Tuhia te pūtakerua o te 8032.
x=\frac{4014±4\sqrt{502}}{2}
Ko te tauaro o -4014 ko 4014.
x=\frac{4\sqrt{502}+4014}{2}
Nā, me whakaoti te whārite x=\frac{4014±4\sqrt{502}}{2} ina he tāpiri te ±. Tāpiri 4014 ki te 4\sqrt{502}.
x=2\sqrt{502}+2007
Whakawehe 4014+4\sqrt{502} ki te 2.
x=\frac{4014-4\sqrt{502}}{2}
Nā, me whakaoti te whārite x=\frac{4014±4\sqrt{502}}{2} ina he tango te ±. Tango 4\sqrt{502} mai i 4014.
x=2007-2\sqrt{502}
Whakawehe 4014-4\sqrt{502} ki te 2.
x=2\sqrt{502}+2007 x=2007-2\sqrt{502}
Kua oti te whārite te whakatau.
4028048-4014x+x^{2}=2007
Whakamahia te āhuatanga tuaritanga hei whakarea te 2008-x ki te 2006-x ka whakakotahi i ngā kupu rite.
-4014x+x^{2}=2007-4028048
Tangohia te 4028048 mai i ngā taha e rua.
-4014x+x^{2}=-4026041
Tangohia te 4028048 i te 2007, ka -4026041.
x^{2}-4014x=-4026041
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-4014x+\left(-2007\right)^{2}=-4026041+\left(-2007\right)^{2}
Whakawehea te -4014, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2007. Nā, tāpiria te pūrua o te -2007 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4014x+4028049=-4026041+4028049
Pūrua -2007.
x^{2}-4014x+4028049=2008
Tāpiri -4026041 ki te 4028049.
\left(x-2007\right)^{2}=2008
Tauwehea x^{2}-4014x+4028049. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2007\right)^{2}}=\sqrt{2008}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2007=2\sqrt{502} x-2007=-2\sqrt{502}
Whakarūnātia.
x=2\sqrt{502}+2007 x=2007-2\sqrt{502}
Me tāpiri 2007 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}