Whakaoti mō x
x=5\sqrt{406}+95\approx 195.747208398
x=95-5\sqrt{406}\approx -5.747208398
Graph
Tohaina
Kua tāruatia ki te papatopenga
4000+380x-2x^{2}=1750
Whakamahia te āhuatanga tuaritanga hei whakarea te 200-x ki te 20+2x ka whakakotahi i ngā kupu rite.
4000+380x-2x^{2}-1750=0
Tangohia te 1750 mai i ngā taha e rua.
2250+380x-2x^{2}=0
Tangohia te 1750 i te 4000, ka 2250.
-2x^{2}+380x+2250=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-380±\sqrt{380^{2}-4\left(-2\right)\times 2250}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 380 mō b, me 2250 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-380±\sqrt{144400-4\left(-2\right)\times 2250}}{2\left(-2\right)}
Pūrua 380.
x=\frac{-380±\sqrt{144400+8\times 2250}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-380±\sqrt{144400+18000}}{2\left(-2\right)}
Whakareatia 8 ki te 2250.
x=\frac{-380±\sqrt{162400}}{2\left(-2\right)}
Tāpiri 144400 ki te 18000.
x=\frac{-380±20\sqrt{406}}{2\left(-2\right)}
Tuhia te pūtakerua o te 162400.
x=\frac{-380±20\sqrt{406}}{-4}
Whakareatia 2 ki te -2.
x=\frac{20\sqrt{406}-380}{-4}
Nā, me whakaoti te whārite x=\frac{-380±20\sqrt{406}}{-4} ina he tāpiri te ±. Tāpiri -380 ki te 20\sqrt{406}.
x=95-5\sqrt{406}
Whakawehe -380+20\sqrt{406} ki te -4.
x=\frac{-20\sqrt{406}-380}{-4}
Nā, me whakaoti te whārite x=\frac{-380±20\sqrt{406}}{-4} ina he tango te ±. Tango 20\sqrt{406} mai i -380.
x=5\sqrt{406}+95
Whakawehe -380-20\sqrt{406} ki te -4.
x=95-5\sqrt{406} x=5\sqrt{406}+95
Kua oti te whārite te whakatau.
4000+380x-2x^{2}=1750
Whakamahia te āhuatanga tuaritanga hei whakarea te 200-x ki te 20+2x ka whakakotahi i ngā kupu rite.
380x-2x^{2}=1750-4000
Tangohia te 4000 mai i ngā taha e rua.
380x-2x^{2}=-2250
Tangohia te 4000 i te 1750, ka -2250.
-2x^{2}+380x=-2250
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+380x}{-2}=-\frac{2250}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{380}{-2}x=-\frac{2250}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-190x=-\frac{2250}{-2}
Whakawehe 380 ki te -2.
x^{2}-190x=1125
Whakawehe -2250 ki te -2.
x^{2}-190x+\left(-95\right)^{2}=1125+\left(-95\right)^{2}
Whakawehea te -190, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -95. Nā, tāpiria te pūrua o te -95 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-190x+9025=1125+9025
Pūrua -95.
x^{2}-190x+9025=10150
Tāpiri 1125 ki te 9025.
\left(x-95\right)^{2}=10150
Tauwehea x^{2}-190x+9025. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-95\right)^{2}}=\sqrt{10150}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-95=5\sqrt{406} x-95=-5\sqrt{406}
Whakarūnātia.
x=5\sqrt{406}+95 x=95-5\sqrt{406}
Me tāpiri 95 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}