(200-20(x-10)(x-8)=640
Whakaoti mō x (complex solution)
x=9+\sqrt{21}i\approx 9+4.582575695i
x=-\sqrt{21}i+9\approx 9-4.582575695i
Graph
Tohaina
Kua tāruatia ki te papatopenga
200-20\left(x-10\right)\left(x-8\right)-640=0
Tangohia te 640 mai i ngā taha e rua.
200+\left(-20x+200\right)\left(x-8\right)-640=0
Whakamahia te āhuatanga tohatoha hei whakarea te -20 ki te x-10.
200-20x^{2}+360x-1600-640=0
Whakamahia te āhuatanga tuaritanga hei whakarea te -20x+200 ki te x-8 ka whakakotahi i ngā kupu rite.
-1400-20x^{2}+360x-640=0
Tangohia te 1600 i te 200, ka -1400.
-2040-20x^{2}+360x=0
Tangohia te 640 i te -1400, ka -2040.
-20x^{2}+360x-2040=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-360±\sqrt{360^{2}-4\left(-20\right)\left(-2040\right)}}{2\left(-20\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -20 mō a, 360 mō b, me -2040 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-360±\sqrt{129600-4\left(-20\right)\left(-2040\right)}}{2\left(-20\right)}
Pūrua 360.
x=\frac{-360±\sqrt{129600+80\left(-2040\right)}}{2\left(-20\right)}
Whakareatia -4 ki te -20.
x=\frac{-360±\sqrt{129600-163200}}{2\left(-20\right)}
Whakareatia 80 ki te -2040.
x=\frac{-360±\sqrt{-33600}}{2\left(-20\right)}
Tāpiri 129600 ki te -163200.
x=\frac{-360±40\sqrt{21}i}{2\left(-20\right)}
Tuhia te pūtakerua o te -33600.
x=\frac{-360±40\sqrt{21}i}{-40}
Whakareatia 2 ki te -20.
x=\frac{-360+40\sqrt{21}i}{-40}
Nā, me whakaoti te whārite x=\frac{-360±40\sqrt{21}i}{-40} ina he tāpiri te ±. Tāpiri -360 ki te 40i\sqrt{21}.
x=-\sqrt{21}i+9
Whakawehe -360+40i\sqrt{21} ki te -40.
x=\frac{-40\sqrt{21}i-360}{-40}
Nā, me whakaoti te whārite x=\frac{-360±40\sqrt{21}i}{-40} ina he tango te ±. Tango 40i\sqrt{21} mai i -360.
x=9+\sqrt{21}i
Whakawehe -360-40i\sqrt{21} ki te -40.
x=-\sqrt{21}i+9 x=9+\sqrt{21}i
Kua oti te whārite te whakatau.
200-20\left(x-10\right)\left(x-8\right)=640
Whakareatia te -1 ki te 20, ka -20.
200+\left(-20x+200\right)\left(x-8\right)=640
Whakamahia te āhuatanga tohatoha hei whakarea te -20 ki te x-10.
200-20x^{2}+360x-1600=640
Whakamahia te āhuatanga tuaritanga hei whakarea te -20x+200 ki te x-8 ka whakakotahi i ngā kupu rite.
-1400-20x^{2}+360x=640
Tangohia te 1600 i te 200, ka -1400.
-20x^{2}+360x=640+1400
Me tāpiri te 1400 ki ngā taha e rua.
-20x^{2}+360x=2040
Tāpirihia te 640 ki te 1400, ka 2040.
\frac{-20x^{2}+360x}{-20}=\frac{2040}{-20}
Whakawehea ngā taha e rua ki te -20.
x^{2}+\frac{360}{-20}x=\frac{2040}{-20}
Mā te whakawehe ki te -20 ka wetekia te whakareanga ki te -20.
x^{2}-18x=\frac{2040}{-20}
Whakawehe 360 ki te -20.
x^{2}-18x=-102
Whakawehe 2040 ki te -20.
x^{2}-18x+\left(-9\right)^{2}=-102+\left(-9\right)^{2}
Whakawehea te -18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -9. Nā, tāpiria te pūrua o te -9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-18x+81=-102+81
Pūrua -9.
x^{2}-18x+81=-21
Tāpiri -102 ki te 81.
\left(x-9\right)^{2}=-21
Tauwehea x^{2}-18x+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9\right)^{2}}=\sqrt{-21}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-9=\sqrt{21}i x-9=-\sqrt{21}i
Whakarūnātia.
x=9+\sqrt{21}i x=-\sqrt{21}i+9
Me tāpiri 9 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}