Whakaoti mō x
x = \frac{\sqrt{177} + 15}{2} \approx 14.152067348
x=\frac{15-\sqrt{177}}{2}\approx 0.847932652
Graph
Tohaina
Kua tāruatia ki te papatopenga
2000+300x-20x^{2}=2240
Whakamahia te āhuatanga tuaritanga hei whakarea te 20-x ki te 100+20x ka whakakotahi i ngā kupu rite.
2000+300x-20x^{2}-2240=0
Tangohia te 2240 mai i ngā taha e rua.
-240+300x-20x^{2}=0
Tangohia te 2240 i te 2000, ka -240.
-20x^{2}+300x-240=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-300±\sqrt{300^{2}-4\left(-20\right)\left(-240\right)}}{2\left(-20\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -20 mō a, 300 mō b, me -240 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-300±\sqrt{90000-4\left(-20\right)\left(-240\right)}}{2\left(-20\right)}
Pūrua 300.
x=\frac{-300±\sqrt{90000+80\left(-240\right)}}{2\left(-20\right)}
Whakareatia -4 ki te -20.
x=\frac{-300±\sqrt{90000-19200}}{2\left(-20\right)}
Whakareatia 80 ki te -240.
x=\frac{-300±\sqrt{70800}}{2\left(-20\right)}
Tāpiri 90000 ki te -19200.
x=\frac{-300±20\sqrt{177}}{2\left(-20\right)}
Tuhia te pūtakerua o te 70800.
x=\frac{-300±20\sqrt{177}}{-40}
Whakareatia 2 ki te -20.
x=\frac{20\sqrt{177}-300}{-40}
Nā, me whakaoti te whārite x=\frac{-300±20\sqrt{177}}{-40} ina he tāpiri te ±. Tāpiri -300 ki te 20\sqrt{177}.
x=\frac{15-\sqrt{177}}{2}
Whakawehe -300+20\sqrt{177} ki te -40.
x=\frac{-20\sqrt{177}-300}{-40}
Nā, me whakaoti te whārite x=\frac{-300±20\sqrt{177}}{-40} ina he tango te ±. Tango 20\sqrt{177} mai i -300.
x=\frac{\sqrt{177}+15}{2}
Whakawehe -300-20\sqrt{177} ki te -40.
x=\frac{15-\sqrt{177}}{2} x=\frac{\sqrt{177}+15}{2}
Kua oti te whārite te whakatau.
2000+300x-20x^{2}=2240
Whakamahia te āhuatanga tuaritanga hei whakarea te 20-x ki te 100+20x ka whakakotahi i ngā kupu rite.
300x-20x^{2}=2240-2000
Tangohia te 2000 mai i ngā taha e rua.
300x-20x^{2}=240
Tangohia te 2000 i te 2240, ka 240.
-20x^{2}+300x=240
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-20x^{2}+300x}{-20}=\frac{240}{-20}
Whakawehea ngā taha e rua ki te -20.
x^{2}+\frac{300}{-20}x=\frac{240}{-20}
Mā te whakawehe ki te -20 ka wetekia te whakareanga ki te -20.
x^{2}-15x=\frac{240}{-20}
Whakawehe 300 ki te -20.
x^{2}-15x=-12
Whakawehe 240 ki te -20.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-12+\left(-\frac{15}{2}\right)^{2}
Whakawehea te -15, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{2}. Nā, tāpiria te pūrua o te -\frac{15}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-15x+\frac{225}{4}=-12+\frac{225}{4}
Pūruatia -\frac{15}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-15x+\frac{225}{4}=\frac{177}{4}
Tāpiri -12 ki te \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=\frac{177}{4}
Tauwehea x^{2}-15x+\frac{225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{177}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{15}{2}=\frac{\sqrt{177}}{2} x-\frac{15}{2}=-\frac{\sqrt{177}}{2}
Whakarūnātia.
x=\frac{\sqrt{177}+15}{2} x=\frac{15-\sqrt{177}}{2}
Me tāpiri \frac{15}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}