Whakaoti mō x
x=\sqrt{226}+5\approx 20.033296378
x=5-\sqrt{226}\approx -10.033296378
Graph
Tohaina
Kua tāruatia ki te papatopenga
120-50x+5x^{2}=125\times 9
Whakamahia te āhuatanga tuaritanga hei whakarea te 20-5x ki te 6-x ka whakakotahi i ngā kupu rite.
120-50x+5x^{2}=1125
Whakareatia te 125 ki te 9, ka 1125.
120-50x+5x^{2}-1125=0
Tangohia te 1125 mai i ngā taha e rua.
-1005-50x+5x^{2}=0
Tangohia te 1125 i te 120, ka -1005.
5x^{2}-50x-1005=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 5\left(-1005\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -50 mō b, me -1005 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 5\left(-1005\right)}}{2\times 5}
Pūrua -50.
x=\frac{-\left(-50\right)±\sqrt{2500-20\left(-1005\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-50\right)±\sqrt{2500+20100}}{2\times 5}
Whakareatia -20 ki te -1005.
x=\frac{-\left(-50\right)±\sqrt{22600}}{2\times 5}
Tāpiri 2500 ki te 20100.
x=\frac{-\left(-50\right)±10\sqrt{226}}{2\times 5}
Tuhia te pūtakerua o te 22600.
x=\frac{50±10\sqrt{226}}{2\times 5}
Ko te tauaro o -50 ko 50.
x=\frac{50±10\sqrt{226}}{10}
Whakareatia 2 ki te 5.
x=\frac{10\sqrt{226}+50}{10}
Nā, me whakaoti te whārite x=\frac{50±10\sqrt{226}}{10} ina he tāpiri te ±. Tāpiri 50 ki te 10\sqrt{226}.
x=\sqrt{226}+5
Whakawehe 50+10\sqrt{226} ki te 10.
x=\frac{50-10\sqrt{226}}{10}
Nā, me whakaoti te whārite x=\frac{50±10\sqrt{226}}{10} ina he tango te ±. Tango 10\sqrt{226} mai i 50.
x=5-\sqrt{226}
Whakawehe 50-10\sqrt{226} ki te 10.
x=\sqrt{226}+5 x=5-\sqrt{226}
Kua oti te whārite te whakatau.
120-50x+5x^{2}=125\times 9
Whakamahia te āhuatanga tuaritanga hei whakarea te 20-5x ki te 6-x ka whakakotahi i ngā kupu rite.
120-50x+5x^{2}=1125
Whakareatia te 125 ki te 9, ka 1125.
-50x+5x^{2}=1125-120
Tangohia te 120 mai i ngā taha e rua.
-50x+5x^{2}=1005
Tangohia te 120 i te 1125, ka 1005.
5x^{2}-50x=1005
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{5x^{2}-50x}{5}=\frac{1005}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{50}{5}\right)x=\frac{1005}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-10x=\frac{1005}{5}
Whakawehe -50 ki te 5.
x^{2}-10x=201
Whakawehe 1005 ki te 5.
x^{2}-10x+\left(-5\right)^{2}=201+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-10x+25=201+25
Pūrua -5.
x^{2}-10x+25=226
Tāpiri 201 ki te 25.
\left(x-5\right)^{2}=226
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{226}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=\sqrt{226} x-5=-\sqrt{226}
Whakarūnātia.
x=\sqrt{226}+5 x=5-\sqrt{226}
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}