Whakaoti mō x
x=2
x = \frac{32}{3} = 10\frac{2}{3} \approx 10.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
240-76x+6x^{2}=112
Whakamahia te āhuatanga tuaritanga hei whakarea te 20-3x ki te 12-2x ka whakakotahi i ngā kupu rite.
240-76x+6x^{2}-112=0
Tangohia te 112 mai i ngā taha e rua.
128-76x+6x^{2}=0
Tangohia te 112 i te 240, ka 128.
6x^{2}-76x+128=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-76\right)±\sqrt{\left(-76\right)^{2}-4\times 6\times 128}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -76 mō b, me 128 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-76\right)±\sqrt{5776-4\times 6\times 128}}{2\times 6}
Pūrua -76.
x=\frac{-\left(-76\right)±\sqrt{5776-24\times 128}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-76\right)±\sqrt{5776-3072}}{2\times 6}
Whakareatia -24 ki te 128.
x=\frac{-\left(-76\right)±\sqrt{2704}}{2\times 6}
Tāpiri 5776 ki te -3072.
x=\frac{-\left(-76\right)±52}{2\times 6}
Tuhia te pūtakerua o te 2704.
x=\frac{76±52}{2\times 6}
Ko te tauaro o -76 ko 76.
x=\frac{76±52}{12}
Whakareatia 2 ki te 6.
x=\frac{128}{12}
Nā, me whakaoti te whārite x=\frac{76±52}{12} ina he tāpiri te ±. Tāpiri 76 ki te 52.
x=\frac{32}{3}
Whakahekea te hautanga \frac{128}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{24}{12}
Nā, me whakaoti te whārite x=\frac{76±52}{12} ina he tango te ±. Tango 52 mai i 76.
x=2
Whakawehe 24 ki te 12.
x=\frac{32}{3} x=2
Kua oti te whārite te whakatau.
240-76x+6x^{2}=112
Whakamahia te āhuatanga tuaritanga hei whakarea te 20-3x ki te 12-2x ka whakakotahi i ngā kupu rite.
-76x+6x^{2}=112-240
Tangohia te 240 mai i ngā taha e rua.
-76x+6x^{2}=-128
Tangohia te 240 i te 112, ka -128.
6x^{2}-76x=-128
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{6x^{2}-76x}{6}=-\frac{128}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\left(-\frac{76}{6}\right)x=-\frac{128}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{38}{3}x=-\frac{128}{6}
Whakahekea te hautanga \frac{-76}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{38}{3}x=-\frac{64}{3}
Whakahekea te hautanga \frac{-128}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{38}{3}x+\left(-\frac{19}{3}\right)^{2}=-\frac{64}{3}+\left(-\frac{19}{3}\right)^{2}
Whakawehea te -\frac{38}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{19}{3}. Nā, tāpiria te pūrua o te -\frac{19}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{38}{3}x+\frac{361}{9}=-\frac{64}{3}+\frac{361}{9}
Pūruatia -\frac{19}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{38}{3}x+\frac{361}{9}=\frac{169}{9}
Tāpiri -\frac{64}{3} ki te \frac{361}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{19}{3}\right)^{2}=\frac{169}{9}
Tauwehea x^{2}-\frac{38}{3}x+\frac{361}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{3}\right)^{2}}=\sqrt{\frac{169}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{19}{3}=\frac{13}{3} x-\frac{19}{3}=-\frac{13}{3}
Whakarūnātia.
x=\frac{32}{3} x=2
Me tāpiri \frac{19}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}