Whakaoti mō x
x=5
x=75
Graph
Tohaina
Kua tāruatia ki te papatopenga
2000+80x-x^{2}=2375
Whakamahia te āhuatanga tuaritanga hei whakarea te 20+x ki te 100-x ka whakakotahi i ngā kupu rite.
2000+80x-x^{2}-2375=0
Tangohia te 2375 mai i ngā taha e rua.
-375+80x-x^{2}=0
Tangohia te 2375 i te 2000, ka -375.
-x^{2}+80x-375=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-80±\sqrt{80^{2}-4\left(-1\right)\left(-375\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 80 mō b, me -375 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\left(-1\right)\left(-375\right)}}{2\left(-1\right)}
Pūrua 80.
x=\frac{-80±\sqrt{6400+4\left(-375\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-80±\sqrt{6400-1500}}{2\left(-1\right)}
Whakareatia 4 ki te -375.
x=\frac{-80±\sqrt{4900}}{2\left(-1\right)}
Tāpiri 6400 ki te -1500.
x=\frac{-80±70}{2\left(-1\right)}
Tuhia te pūtakerua o te 4900.
x=\frac{-80±70}{-2}
Whakareatia 2 ki te -1.
x=-\frac{10}{-2}
Nā, me whakaoti te whārite x=\frac{-80±70}{-2} ina he tāpiri te ±. Tāpiri -80 ki te 70.
x=5
Whakawehe -10 ki te -2.
x=-\frac{150}{-2}
Nā, me whakaoti te whārite x=\frac{-80±70}{-2} ina he tango te ±. Tango 70 mai i -80.
x=75
Whakawehe -150 ki te -2.
x=5 x=75
Kua oti te whārite te whakatau.
2000+80x-x^{2}=2375
Whakamahia te āhuatanga tuaritanga hei whakarea te 20+x ki te 100-x ka whakakotahi i ngā kupu rite.
80x-x^{2}=2375-2000
Tangohia te 2000 mai i ngā taha e rua.
80x-x^{2}=375
Tangohia te 2000 i te 2375, ka 375.
-x^{2}+80x=375
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+80x}{-1}=\frac{375}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{80}{-1}x=\frac{375}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-80x=\frac{375}{-1}
Whakawehe 80 ki te -1.
x^{2}-80x=-375
Whakawehe 375 ki te -1.
x^{2}-80x+\left(-40\right)^{2}=-375+\left(-40\right)^{2}
Whakawehea te -80, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -40. Nā, tāpiria te pūrua o te -40 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-80x+1600=-375+1600
Pūrua -40.
x^{2}-80x+1600=1225
Tāpiri -375 ki te 1600.
\left(x-40\right)^{2}=1225
Tauwehea x^{2}-80x+1600. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-40\right)^{2}}=\sqrt{1225}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-40=35 x-40=-35
Whakarūnātia.
x=75 x=5
Me tāpiri 40 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}