Aromātai
0.75
Tauwehe
\frac{3}{2 ^ {2}} = 0.75
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
(2.8 \div 1.6) \frac{ 2- \frac{ 1 }{ 2 } }{ 3 \frac{ 1 }{ 2 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{28}{16}\times \frac{2-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Whakarohaina te \frac{2.8}{1.6} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{7}{4}\times \frac{2-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Whakahekea te hautanga \frac{28}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{7}{4}\times \frac{\frac{4}{2}-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Me tahuri te 2 ki te hautau \frac{4}{2}.
\frac{7}{4}\times \frac{\frac{4-1}{2}}{\frac{3\times 2+1}{2}}
Tā te mea he rite te tauraro o \frac{4}{2} me \frac{1}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{7}{4}\times \frac{\frac{3}{2}}{\frac{3\times 2+1}{2}}
Tangohia te 1 i te 4, ka 3.
\frac{7}{4}\times \frac{\frac{3}{2}}{\frac{6+1}{2}}
Whakareatia te 3 ki te 2, ka 6.
\frac{7}{4}\times \frac{\frac{3}{2}}{\frac{7}{2}}
Tāpirihia te 6 ki te 1, ka 7.
\frac{7}{4}\times \frac{3}{2}\times \frac{2}{7}
Whakawehe \frac{3}{2} ki te \frac{7}{2} mā te whakarea \frac{3}{2} ki te tau huripoki o \frac{7}{2}.
\frac{7}{4}\times \frac{3\times 2}{2\times 7}
Me whakarea te \frac{3}{2} ki te \frac{2}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{7}{4}\times \frac{3}{7}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{7\times 3}{4\times 7}
Me whakarea te \frac{7}{4} ki te \frac{3}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{4}
Me whakakore tahi te 7 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}