Whakaoti mō x
x = -\frac{575}{38} = -15\frac{5}{38} \approx -15.131578947
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2\left(x+10\right)+3\right)\times 25=12x+0\times 5
Whakareatia ngā taha e rua o te whārite ki te 3.
\left(2x+20+3\right)\times 25=12x+0\times 5
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+10.
\left(2x+23\right)\times 25=12x+0\times 5
Tāpirihia te 20 ki te 3, ka 23.
50x+575=12x+0\times 5
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+23 ki te 25.
50x+575=12x+0
Whakareatia te 0 ki te 5, ka 0.
50x+575=12x
Ko te tau i tāpiria he kore ka hua koia tonu.
50x+575-12x=0
Tangohia te 12x mai i ngā taha e rua.
38x+575=0
Pahekotia te 50x me -12x, ka 38x.
38x=-575
Tangohia te 575 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-575}{38}
Whakawehea ngā taha e rua ki te 38.
x=-\frac{575}{38}
Ka taea te hautanga \frac{-575}{38} te tuhi anō ko -\frac{575}{38} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}