Tīpoka ki ngā ihirangi matua
Aromātai (complex solution)
Tick mark Image
Wāhi Tūturu (complex solution)
Tick mark Image
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2^{2}-\left(\sqrt{-9}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4-\left(\sqrt{-9}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4-\left(-9\right)
Ko te pūrua o \sqrt{-9} ko -9.
4+9
Ko te tauaro o -9 ko 9.
13
Tāpirihia te 4 ki te 9, ka 13.
Re(2^{2}-\left(\sqrt{-9}\right)^{2})
Whakaarohia te \left(2+\sqrt{-9}\right)\left(2-\sqrt{-9}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(4-\left(\sqrt{-9}\right)^{2})
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
Re(4-\left(-9\right))
Ko te pūrua o \sqrt{-9} ko -9.
Re(4+9)
Ko te tauaro o -9 ko 9.
Re(13)
Tāpirihia te 4 ki te 9, ka 13.
13
Ko te wāhi tūturu o 13 ko 13.
2^{2}-\left(\sqrt{-9}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4-\left(\sqrt{-9}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4-\left(-9\right)
Tātaihia te \sqrt{-9} mā te pū o 2, kia riro ko -9.
4+9
Ko te tauaro o -9 ko 9.
13
Tāpirihia te 4 ki te 9, ka 13.