Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{3}+2x^{2}-3x+2-3x^{2}+4x-4
Pahekotia te 2x^{3} me x^{3}, ka 3x^{3}.
3x^{3}-x^{2}-3x+2+4x-4
Pahekotia te 2x^{2} me -3x^{2}, ka -x^{2}.
3x^{3}-x^{2}+x+2-4
Pahekotia te -3x me 4x, ka x.
3x^{3}-x^{2}+x-2
Tangohia te 4 i te 2, ka -2.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{3}+2x^{2}-3x+2-3x^{2}+4x-4)
Pahekotia te 2x^{3} me x^{3}, ka 3x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{3}-x^{2}-3x+2+4x-4)
Pahekotia te 2x^{2} me -3x^{2}, ka -x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{3}-x^{2}+x+2-4)
Pahekotia te -3x me 4x, ka x.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{3}-x^{2}+x-2)
Tangohia te 4 i te 2, ka -2.
3\times 3x^{3-1}+2\left(-1\right)x^{2-1}+x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
9x^{3-1}+2\left(-1\right)x^{2-1}+x^{1-1}
Whakareatia 3 ki te 3.
9x^{2}+2\left(-1\right)x^{2-1}+x^{1-1}
Tango 1 mai i 3.
9x^{2}-2x^{2-1}+x^{1-1}
Whakareatia 2 ki te -1.
9x^{2}-2x^{1}+x^{1-1}
Tango 1 mai i 2.
9x^{2}-2x^{1}+x^{0}
Tango 1 mai i 1.
9x^{2}-2x+x^{0}
Mō tētahi kupu t, t^{1}=t.
9x^{2}-2x+1
Mō tētahi kupu t mahue te 0, t^{0}=1.