Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2\sqrt{3}\right)^{2}-\left(3\sqrt{5}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}\left(\sqrt{3}\right)^{2}-\left(3\sqrt{5}\right)^{2}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
4\left(\sqrt{3}\right)^{2}-\left(3\sqrt{5}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4\times 3-\left(3\sqrt{5}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
12-\left(3\sqrt{5}\right)^{2}
Whakareatia te 4 ki te 3, ka 12.
12-3^{2}\left(\sqrt{5}\right)^{2}
Whakarohaina te \left(3\sqrt{5}\right)^{2}.
12-9\left(\sqrt{5}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
12-9\times 5
Ko te pūrua o \sqrt{5} ko 5.
12-45
Whakareatia te 9 ki te 5, ka 45.
-33
Tangohia te 45 i te 12, ka -33.