Aromātai
\frac{17}{6}\approx 2.833333333
Tauwehe
\frac{17}{2 \cdot 3} = 2\frac{5}{6} = 2.8333333333333335
Tohaina
Kua tāruatia ki te papatopenga
\left(2\times \frac{\sqrt{2}}{\sqrt{3}}-5\sqrt{\frac{3}{8}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2}}{\sqrt{3}}.
\left(2\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-5\sqrt{\frac{3}{8}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\left(2\times \frac{\sqrt{2}\sqrt{3}}{3}-5\sqrt{\frac{3}{8}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Ko te pūrua o \sqrt{3} ko 3.
\left(2\times \frac{\sqrt{6}}{3}-5\sqrt{\frac{3}{8}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\left(\frac{2\sqrt{6}}{3}-5\sqrt{\frac{3}{8}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Tuhia te 2\times \frac{\sqrt{6}}{3} hei hautanga kotahi.
\left(\frac{2\sqrt{6}}{3}-5\times \frac{\sqrt{3}}{\sqrt{8}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{3}{8}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{3}}{\sqrt{8}}.
\left(\frac{2\sqrt{6}}{3}-5\times \frac{\sqrt{3}}{2\sqrt{2}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\left(\frac{2\sqrt{6}}{3}-5\times \frac{\sqrt{3}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Whakangāwaritia te tauraro o \frac{\sqrt{3}}{2\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\left(\frac{2\sqrt{6}}{3}-5\times \frac{\sqrt{3}\sqrt{2}}{2\times 2}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Ko te pūrua o \sqrt{2} ko 2.
\left(\frac{2\sqrt{6}}{3}-5\times \frac{\sqrt{6}}{2\times 2}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\left(\frac{2\sqrt{6}}{3}-5\times \frac{\sqrt{6}}{4}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Whakareatia te 2 ki te 2, ka 4.
\left(\frac{2\sqrt{6}}{3}+\frac{-5\sqrt{6}}{4}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Tuhia te -5\times \frac{\sqrt{6}}{4} hei hautanga kotahi.
\left(\frac{2\sqrt{6}}{3}+\frac{-5\sqrt{6}}{4}+4\times \frac{\sqrt{3}}{\sqrt{2}}\right)\sqrt{\frac{2}{3}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{3}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{3}}{\sqrt{2}}.
\left(\frac{2\sqrt{6}}{3}+\frac{-5\sqrt{6}}{4}+4\times \frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)\sqrt{\frac{2}{3}}
Whakangāwaritia te tauraro o \frac{\sqrt{3}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\left(\frac{2\sqrt{6}}{3}+\frac{-5\sqrt{6}}{4}+4\times \frac{\sqrt{3}\sqrt{2}}{2}\right)\sqrt{\frac{2}{3}}
Ko te pūrua o \sqrt{2} ko 2.
\left(\frac{2\sqrt{6}}{3}+\frac{-5\sqrt{6}}{4}+4\times \frac{\sqrt{6}}{2}\right)\sqrt{\frac{2}{3}}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\left(\frac{2\sqrt{6}}{3}+\frac{-5\sqrt{6}}{4}+2\sqrt{6}\right)\sqrt{\frac{2}{3}}
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
\left(\frac{8}{3}\sqrt{6}+\frac{-5\sqrt{6}}{4}\right)\sqrt{\frac{2}{3}}
Pahekotia te \frac{2\sqrt{6}}{3} me 2\sqrt{6}, ka \frac{8}{3}\sqrt{6}.
\left(\frac{8}{3}\sqrt{6}+\frac{-5\sqrt{6}}{4}\right)\times \frac{\sqrt{2}}{\sqrt{3}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2}}{\sqrt{3}}.
\left(\frac{8}{3}\sqrt{6}+\frac{-5\sqrt{6}}{4}\right)\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\left(\frac{8}{3}\sqrt{6}+\frac{-5\sqrt{6}}{4}\right)\times \frac{\sqrt{2}\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\left(\frac{8}{3}\sqrt{6}+\frac{-5\sqrt{6}}{4}\right)\times \frac{\sqrt{6}}{3}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{8}{3}\sqrt{6}\times \frac{\sqrt{6}}{3}+\frac{-5\sqrt{6}}{4}\times \frac{\sqrt{6}}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{8}{3}\sqrt{6}+\frac{-5\sqrt{6}}{4} ki te \frac{\sqrt{6}}{3}.
\frac{8\sqrt{6}}{3\times 3}\sqrt{6}+\frac{-5\sqrt{6}}{4}\times \frac{\sqrt{6}}{3}
Me whakarea te \frac{8}{3} ki te \frac{\sqrt{6}}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{8\sqrt{6}}{3\times 3}\sqrt{6}+\frac{-5\sqrt{6}\sqrt{6}}{4\times 3}
Me whakarea te \frac{-5\sqrt{6}}{4} ki te \frac{\sqrt{6}}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{8\sqrt{6}}{3\times 3}\sqrt{6}+\frac{-5\times 6}{4\times 3}
Whakareatia te \sqrt{6} ki te \sqrt{6}, ka 6.
\frac{8\sqrt{6}}{9}\sqrt{6}+\frac{-5\times 6}{4\times 3}
Whakareatia te 3 ki te 3, ka 9.
\frac{8\sqrt{6}\sqrt{6}}{9}+\frac{-5\times 6}{4\times 3}
Tuhia te \frac{8\sqrt{6}}{9}\sqrt{6} hei hautanga kotahi.
\frac{8\sqrt{6}\sqrt{6}}{9}+\frac{-5}{2}
Me whakakore tahi te 2\times 3 i te taurunga me te tauraro.
\frac{8\sqrt{6}\sqrt{6}}{9}-\frac{5}{2}
Ka taea te hautanga \frac{-5}{2} te tuhi anō ko -\frac{5}{2} mā te tango i te tohu tōraro.
\frac{2\times 8\sqrt{6}\sqrt{6}}{18}-\frac{5\times 9}{18}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 9 me 2 ko 18. Whakareatia \frac{8\sqrt{6}\sqrt{6}}{9} ki te \frac{2}{2}. Whakareatia \frac{5}{2} ki te \frac{9}{9}.
\frac{2\times 8\sqrt{6}\sqrt{6}-5\times 9}{18}
Tā te mea he rite te tauraro o \frac{2\times 8\sqrt{6}\sqrt{6}}{18} me \frac{5\times 9}{18}, me tango rāua mā te tango i ō raua taurunga.
\frac{96-45}{18}
Mahia ngā whakarea i roto o 2\times 8\sqrt{6}\sqrt{6}-5\times 9.
\frac{51}{18}
Mahia ngā tātaitai i roto o 96-45.
\frac{17}{6}
Whakahekea te hautanga \frac{51}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}