Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

18x-3x^{2}=40
Whakamahia te āhuatanga tohatoha hei whakarea te 18-3x ki te x.
18x-3x^{2}-40=0
Tangohia te 40 mai i ngā taha e rua.
-3x^{2}+18x-40=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-18±\sqrt{18^{2}-4\left(-3\right)\left(-40\right)}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 18 mō b, me -40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-3\right)\left(-40\right)}}{2\left(-3\right)}
Pūrua 18.
x=\frac{-18±\sqrt{324+12\left(-40\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-18±\sqrt{324-480}}{2\left(-3\right)}
Whakareatia 12 ki te -40.
x=\frac{-18±\sqrt{-156}}{2\left(-3\right)}
Tāpiri 324 ki te -480.
x=\frac{-18±2\sqrt{39}i}{2\left(-3\right)}
Tuhia te pūtakerua o te -156.
x=\frac{-18±2\sqrt{39}i}{-6}
Whakareatia 2 ki te -3.
x=\frac{-18+2\sqrt{39}i}{-6}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{39}i}{-6} ina he tāpiri te ±. Tāpiri -18 ki te 2i\sqrt{39}.
x=-\frac{\sqrt{39}i}{3}+3
Whakawehe -18+2i\sqrt{39} ki te -6.
x=\frac{-2\sqrt{39}i-18}{-6}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{39}i}{-6} ina he tango te ±. Tango 2i\sqrt{39} mai i -18.
x=\frac{\sqrt{39}i}{3}+3
Whakawehe -18-2i\sqrt{39} ki te -6.
x=-\frac{\sqrt{39}i}{3}+3 x=\frac{\sqrt{39}i}{3}+3
Kua oti te whārite te whakatau.
18x-3x^{2}=40
Whakamahia te āhuatanga tohatoha hei whakarea te 18-3x ki te x.
-3x^{2}+18x=40
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}+18x}{-3}=\frac{40}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{18}{-3}x=\frac{40}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-6x=\frac{40}{-3}
Whakawehe 18 ki te -3.
x^{2}-6x=-\frac{40}{3}
Whakawehe 40 ki te -3.
x^{2}-6x+\left(-3\right)^{2}=-\frac{40}{3}+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-\frac{40}{3}+9
Pūrua -3.
x^{2}-6x+9=-\frac{13}{3}
Tāpiri -\frac{40}{3} ki te 9.
\left(x-3\right)^{2}=-\frac{13}{3}
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-\frac{13}{3}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=\frac{\sqrt{39}i}{3} x-3=-\frac{\sqrt{39}i}{3}
Whakarūnātia.
x=\frac{\sqrt{39}i}{3}+3 x=-\frac{\sqrt{39}i}{3}+3
Me tāpiri 3 ki ngā taha e rua o te whārite.