Whakaoti mō x
x = \frac{15 \sqrt{65} + 175}{2} \approx 147.966933112
x = \frac{175 - 15 \sqrt{65}}{2} \approx 27.033066888
Graph
Tohaina
Kua tāruatia ki te papatopenga
175x-x^{2}=4000
Whakamahia te āhuatanga tohatoha hei whakarea te 175-x ki te x.
175x-x^{2}-4000=0
Tangohia te 4000 mai i ngā taha e rua.
-x^{2}+175x-4000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-175±\sqrt{175^{2}-4\left(-1\right)\left(-4000\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 175 mō b, me -4000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-175±\sqrt{30625-4\left(-1\right)\left(-4000\right)}}{2\left(-1\right)}
Pūrua 175.
x=\frac{-175±\sqrt{30625+4\left(-4000\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-175±\sqrt{30625-16000}}{2\left(-1\right)}
Whakareatia 4 ki te -4000.
x=\frac{-175±\sqrt{14625}}{2\left(-1\right)}
Tāpiri 30625 ki te -16000.
x=\frac{-175±15\sqrt{65}}{2\left(-1\right)}
Tuhia te pūtakerua o te 14625.
x=\frac{-175±15\sqrt{65}}{-2}
Whakareatia 2 ki te -1.
x=\frac{15\sqrt{65}-175}{-2}
Nā, me whakaoti te whārite x=\frac{-175±15\sqrt{65}}{-2} ina he tāpiri te ±. Tāpiri -175 ki te 15\sqrt{65}.
x=\frac{175-15\sqrt{65}}{2}
Whakawehe -175+15\sqrt{65} ki te -2.
x=\frac{-15\sqrt{65}-175}{-2}
Nā, me whakaoti te whārite x=\frac{-175±15\sqrt{65}}{-2} ina he tango te ±. Tango 15\sqrt{65} mai i -175.
x=\frac{15\sqrt{65}+175}{2}
Whakawehe -175-15\sqrt{65} ki te -2.
x=\frac{175-15\sqrt{65}}{2} x=\frac{15\sqrt{65}+175}{2}
Kua oti te whārite te whakatau.
175x-x^{2}=4000
Whakamahia te āhuatanga tohatoha hei whakarea te 175-x ki te x.
-x^{2}+175x=4000
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+175x}{-1}=\frac{4000}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{175}{-1}x=\frac{4000}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-175x=\frac{4000}{-1}
Whakawehe 175 ki te -1.
x^{2}-175x=-4000
Whakawehe 4000 ki te -1.
x^{2}-175x+\left(-\frac{175}{2}\right)^{2}=-4000+\left(-\frac{175}{2}\right)^{2}
Whakawehea te -175, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{175}{2}. Nā, tāpiria te pūrua o te -\frac{175}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-175x+\frac{30625}{4}=-4000+\frac{30625}{4}
Pūruatia -\frac{175}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-175x+\frac{30625}{4}=\frac{14625}{4}
Tāpiri -4000 ki te \frac{30625}{4}.
\left(x-\frac{175}{2}\right)^{2}=\frac{14625}{4}
Tauwehea x^{2}-175x+\frac{30625}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{175}{2}\right)^{2}}=\sqrt{\frac{14625}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{175}{2}=\frac{15\sqrt{65}}{2} x-\frac{175}{2}=-\frac{15\sqrt{65}}{2}
Whakarūnātia.
x=\frac{15\sqrt{65}+175}{2} x=\frac{175-15\sqrt{65}}{2}
Me tāpiri \frac{175}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}