Whakaoti mō x (complex solution)
x=-\frac{i\times 19\sqrt{759487802}}{81859}\approx -0-6.396576049i
x=\frac{i\times 19\sqrt{759487802}}{81859}\approx 6.396576049i
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(1700-881.41\right)x^{2}+38\times 881.41=0
Whakareatia ngā taha e rua o te whārite ki te 19.
818.59x^{2}+38\times 881.41=0
Tangohia te 881.41 i te 1700, ka 818.59.
818.59x^{2}+33493.58=0
Whakareatia te 38 ki te 881.41, ka 33493.58.
818.59x^{2}=-33493.58
Tangohia te 33493.58 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=\frac{-33493.58}{818.59}
Whakawehea ngā taha e rua ki te 818.59.
x^{2}=\frac{-3349358}{81859}
Whakarohaina te \frac{-33493.58}{818.59} mā te whakarea i te taurunga me te tauraro ki te 100.
x^{2}=-\frac{3349358}{81859}
Ka taea te hautanga \frac{-3349358}{81859} te tuhi anō ko -\frac{3349358}{81859} mā te tango i te tohu tōraro.
x=\frac{19\sqrt{759487802}i}{81859} x=-\frac{19\sqrt{759487802}i}{81859}
Kua oti te whārite te whakatau.
\left(1700-881.41\right)x^{2}+38\times 881.41=0
Whakareatia ngā taha e rua o te whārite ki te 19.
818.59x^{2}+38\times 881.41=0
Tangohia te 881.41 i te 1700, ka 818.59.
818.59x^{2}+33493.58=0
Whakareatia te 38 ki te 881.41, ka 33493.58.
x=\frac{0±\sqrt{0^{2}-4\times 818.59\times 33493.58}}{2\times 818.59}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 818.59 mō a, 0 mō b, me 33493.58 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 818.59\times 33493.58}}{2\times 818.59}
Pūrua 0.
x=\frac{0±\sqrt{-3274.36\times 33493.58}}{2\times 818.59}
Whakareatia -4 ki te 818.59.
x=\frac{0±\sqrt{-109670038.6088}}{2\times 818.59}
Whakareatia -3274.36 ki te 33493.58 mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{0±\frac{19\sqrt{759487802}i}{50}}{2\times 818.59}
Tuhia te pūtakerua o te -109670038.6088.
x=\frac{0±\frac{19\sqrt{759487802}i}{50}}{1637.18}
Whakareatia 2 ki te 818.59.
x=\frac{19\sqrt{759487802}i}{81859}
Nā, me whakaoti te whārite x=\frac{0±\frac{19\sqrt{759487802}i}{50}}{1637.18} ina he tāpiri te ±.
x=-\frac{19\sqrt{759487802}i}{81859}
Nā, me whakaoti te whārite x=\frac{0±\frac{19\sqrt{759487802}i}{50}}{1637.18} ina he tango te ±.
x=\frac{19\sqrt{759487802}i}{81859} x=-\frac{19\sqrt{759487802}i}{81859}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}