Aromātai
\frac{287}{2}=143.5
Tauwehe
\frac{7 \cdot 41}{2} = 143\frac{1}{2} = 143.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{285+143+150+126+157}{6}
Tāpirihia te 160 ki te 125, ka 285.
\frac{428+150+126+157}{6}
Tāpirihia te 285 ki te 143, ka 428.
\frac{578+126+157}{6}
Tāpirihia te 428 ki te 150, ka 578.
\frac{704+157}{6}
Tāpirihia te 578 ki te 126, ka 704.
\frac{861}{6}
Tāpirihia te 704 ki te 157, ka 861.
\frac{287}{2}
Whakahekea te hautanga \frac{861}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}