Aromātai
\frac{1200}{19}\approx 63.157894737
Tauwehe
\frac{2 ^ {4} \cdot 3 \cdot 5 ^ {2}}{19} = 63\frac{3}{19} = 63.1578947368421
Tohaina
Kua tāruatia ki te papatopenga
\left(15-\frac{\frac{1700}{285}\times 15}{20}\right)\times 6
Whakareatia te 20 ki te 85, ka 1700.
\left(15-\frac{\frac{340}{57}\times 15}{20}\right)\times 6
Whakahekea te hautanga \frac{1700}{285} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\left(15-\frac{\frac{340\times 15}{57}}{20}\right)\times 6
Tuhia te \frac{340}{57}\times 15 hei hautanga kotahi.
\left(15-\frac{\frac{5100}{57}}{20}\right)\times 6
Whakareatia te 340 ki te 15, ka 5100.
\left(15-\frac{\frac{1700}{19}}{20}\right)\times 6
Whakahekea te hautanga \frac{5100}{57} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\left(15-\frac{1700}{19\times 20}\right)\times 6
Tuhia te \frac{\frac{1700}{19}}{20} hei hautanga kotahi.
\left(15-\frac{1700}{380}\right)\times 6
Whakareatia te 19 ki te 20, ka 380.
\left(15-\frac{85}{19}\right)\times 6
Whakahekea te hautanga \frac{1700}{380} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\left(\frac{285}{19}-\frac{85}{19}\right)\times 6
Me tahuri te 15 ki te hautau \frac{285}{19}.
\frac{285-85}{19}\times 6
Tā te mea he rite te tauraro o \frac{285}{19} me \frac{85}{19}, me tango rāua mā te tango i ō raua taurunga.
\frac{200}{19}\times 6
Tangohia te 85 i te 285, ka 200.
\frac{200\times 6}{19}
Tuhia te \frac{200}{19}\times 6 hei hautanga kotahi.
\frac{1200}{19}
Whakareatia te 200 ki te 6, ka 1200.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}