Whakaoti mō x
x=7.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
78+x\times 4.6=5\left(15+x\right)
Whakareatia te 15 ki te 5.2, ka 78.
78+x\times 4.6=75+5x
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 15+x.
78+x\times 4.6-5x=75
Tangohia te 5x mai i ngā taha e rua.
78-0.4x=75
Pahekotia te x\times 4.6 me -5x, ka -0.4x.
-0.4x=75-78
Tangohia te 78 mai i ngā taha e rua.
-0.4x=-3
Tangohia te 78 i te 75, ka -3.
x=\frac{-3}{-0.4}
Whakawehea ngā taha e rua ki te -0.4.
x=\frac{-30}{-4}
Whakarohaina te \frac{-3}{-0.4} mā te whakarea i te taurunga me te tauraro ki te 10.
x=\frac{15}{2}
Whakahekea te hautanga \frac{-30}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}