Whakaoti mō x (complex solution)
x=-3\sqrt{166}i-4\approx -4-38.65229618i
x=-4+3\sqrt{166}i\approx -4+38.65229618i
Graph
Tohaina
Kua tāruatia ki te papatopenga
240-8x-x^{2}=1750
Whakamahia te āhuatanga tuaritanga hei whakarea te 12-x ki te 20+x ka whakakotahi i ngā kupu rite.
240-8x-x^{2}-1750=0
Tangohia te 1750 mai i ngā taha e rua.
-1510-8x-x^{2}=0
Tangohia te 1750 i te 240, ka -1510.
-x^{2}-8x-1510=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\left(-1510\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -8 mō b, me -1510 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\left(-1510\right)}}{2\left(-1\right)}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64+4\left(-1510\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-8\right)±\sqrt{64-6040}}{2\left(-1\right)}
Whakareatia 4 ki te -1510.
x=\frac{-\left(-8\right)±\sqrt{-5976}}{2\left(-1\right)}
Tāpiri 64 ki te -6040.
x=\frac{-\left(-8\right)±6\sqrt{166}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -5976.
x=\frac{8±6\sqrt{166}i}{2\left(-1\right)}
Ko te tauaro o -8 ko 8.
x=\frac{8±6\sqrt{166}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{8+6\sqrt{166}i}{-2}
Nā, me whakaoti te whārite x=\frac{8±6\sqrt{166}i}{-2} ina he tāpiri te ±. Tāpiri 8 ki te 6i\sqrt{166}.
x=-3\sqrt{166}i-4
Whakawehe 8+6i\sqrt{166} ki te -2.
x=\frac{-6\sqrt{166}i+8}{-2}
Nā, me whakaoti te whārite x=\frac{8±6\sqrt{166}i}{-2} ina he tango te ±. Tango 6i\sqrt{166} mai i 8.
x=-4+3\sqrt{166}i
Whakawehe 8-6i\sqrt{166} ki te -2.
x=-3\sqrt{166}i-4 x=-4+3\sqrt{166}i
Kua oti te whārite te whakatau.
240-8x-x^{2}=1750
Whakamahia te āhuatanga tuaritanga hei whakarea te 12-x ki te 20+x ka whakakotahi i ngā kupu rite.
-8x-x^{2}=1750-240
Tangohia te 240 mai i ngā taha e rua.
-8x-x^{2}=1510
Tangohia te 240 i te 1750, ka 1510.
-x^{2}-8x=1510
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-8x}{-1}=\frac{1510}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{8}{-1}\right)x=\frac{1510}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+8x=\frac{1510}{-1}
Whakawehe -8 ki te -1.
x^{2}+8x=-1510
Whakawehe 1510 ki te -1.
x^{2}+8x+4^{2}=-1510+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+8x+16=-1510+16
Pūrua 4.
x^{2}+8x+16=-1494
Tāpiri -1510 ki te 16.
\left(x+4\right)^{2}=-1494
Tauwehea x^{2}+8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{-1494}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+4=3\sqrt{166}i x+4=-3\sqrt{166}i
Whakarūnātia.
x=-4+3\sqrt{166}i x=-3\sqrt{166}i-4
Me tango 4 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}