Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{12}{x-2}x^{2}
Tuhia te 12\times \frac{1}{x-2} hei hautanga kotahi.
\frac{12x^{2}}{x-2}
Tuhia te \frac{12}{x-2}x^{2} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12}{x-2}x^{2})
Tuhia te 12\times \frac{1}{x-2} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{2}}{x-2})
Tuhia te \frac{12}{x-2}x^{2} hei hautanga kotahi.
\frac{\left(x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(12x^{2})-12x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-2)}{\left(x^{1}-2\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}-2\right)\times 2\times 12x^{2-1}-12x^{2}x^{1-1}}{\left(x^{1}-2\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}-2\right)\times 24x^{1}-12x^{2}x^{0}}{\left(x^{1}-2\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{1}\times 24x^{1}-2\times 24x^{1}-12x^{2}x^{0}}{\left(x^{1}-2\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{24x^{1+1}-2\times 24x^{1}-12x^{2}}{\left(x^{1}-2\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{24x^{2}-48x^{1}-12x^{2}}{\left(x^{1}-2\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(24-12\right)x^{2}-48x^{1}}{\left(x^{1}-2\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{12x^{2}-48x^{1}}{\left(x^{1}-2\right)^{2}}
Tango 12 mai i 24.
\frac{12x\left(x^{1}-4x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Tauwehea te 12x.
\frac{12x\left(x-4x^{0}\right)}{\left(x-2\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{12x\left(x-4\right)}{\left(x-2\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.