Aromātai
\frac{46732}{85}\approx 549.788235294
Tauwehe
\frac{2 ^ {2} \cdot 7 \cdot 1669}{5 \cdot 17} = 549\frac{67}{85} = 549.7882352941176
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{300+13}{25}+\frac{7\times 17+8}{17}\right)\times 25+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Whakareatia te 12 ki te 25, ka 300.
\left(\frac{313}{25}+\frac{7\times 17+8}{17}\right)\times 25+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Tāpirihia te 300 ki te 13, ka 313.
\left(\frac{313}{25}+\frac{119+8}{17}\right)\times 25+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Whakareatia te 7 ki te 17, ka 119.
\left(\frac{313}{25}+\frac{127}{17}\right)\times 25+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Tāpirihia te 119 ki te 8, ka 127.
\left(\frac{5321}{425}+\frac{3175}{425}\right)\times 25+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Ko te maha noa iti rawa atu o 25 me 17 ko 425. Me tahuri \frac{313}{25} me \frac{127}{17} ki te hautau me te tautūnga 425.
\frac{5321+3175}{425}\times 25+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Tā te mea he rite te tauraro o \frac{5321}{425} me \frac{3175}{425}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8496}{425}\times 25+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Tāpirihia te 5321 ki te 3175, ka 8496.
\frac{8496\times 25}{425}+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Tuhia te \frac{8496}{425}\times 25 hei hautanga kotahi.
\frac{212400}{425}+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Whakareatia te 8496 ki te 25, ka 212400.
\frac{8496}{17}+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Whakahekea te hautanga \frac{212400}{425} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{8496}{17}+\left(\frac{153+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Whakareatia te 9 ki te 17, ka 153.
\frac{8496}{17}+\left(\frac{162}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Tāpirihia te 153 ki te 9, ka 162.
\frac{8496}{17}+\left(\frac{162}{17}+\frac{250+12}{25}\right)\times \frac{2\times 2+1}{2}
Whakareatia te 10 ki te 25, ka 250.
\frac{8496}{17}+\left(\frac{162}{17}+\frac{262}{25}\right)\times \frac{2\times 2+1}{2}
Tāpirihia te 250 ki te 12, ka 262.
\frac{8496}{17}+\left(\frac{4050}{425}+\frac{4454}{425}\right)\times \frac{2\times 2+1}{2}
Ko te maha noa iti rawa atu o 17 me 25 ko 425. Me tahuri \frac{162}{17} me \frac{262}{25} ki te hautau me te tautūnga 425.
\frac{8496}{17}+\frac{4050+4454}{425}\times \frac{2\times 2+1}{2}
Tā te mea he rite te tauraro o \frac{4050}{425} me \frac{4454}{425}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8496}{17}+\frac{8504}{425}\times \frac{2\times 2+1}{2}
Tāpirihia te 4050 ki te 4454, ka 8504.
\frac{8496}{17}+\frac{8504}{425}\times \frac{4+1}{2}
Whakareatia te 2 ki te 2, ka 4.
\frac{8496}{17}+\frac{8504}{425}\times \frac{5}{2}
Tāpirihia te 4 ki te 1, ka 5.
\frac{8496}{17}+\frac{8504\times 5}{425\times 2}
Me whakarea te \frac{8504}{425} ki te \frac{5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{8496}{17}+\frac{42520}{850}
Mahia ngā whakarea i roto i te hautanga \frac{8504\times 5}{425\times 2}.
\frac{8496}{17}+\frac{4252}{85}
Whakahekea te hautanga \frac{42520}{850} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{42480}{85}+\frac{4252}{85}
Ko te maha noa iti rawa atu o 17 me 85 ko 85. Me tahuri \frac{8496}{17} me \frac{4252}{85} ki te hautau me te tautūnga 85.
\frac{42480+4252}{85}
Tā te mea he rite te tauraro o \frac{42480}{85} me \frac{4252}{85}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{46732}{85}
Tāpirihia te 42480 ki te 4252, ka 46732.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}