Whakaoti mō x
x=-6
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
121x^{2}+484x+160=1612
Whakamahia te āhuatanga tuaritanga hei whakarea te 11x+4 ki te 11x+40 ka whakakotahi i ngā kupu rite.
121x^{2}+484x+160-1612=0
Tangohia te 1612 mai i ngā taha e rua.
121x^{2}+484x-1452=0
Tangohia te 1612 i te 160, ka -1452.
x=\frac{-484±\sqrt{484^{2}-4\times 121\left(-1452\right)}}{2\times 121}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 121 mō a, 484 mō b, me -1452 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-484±\sqrt{234256-4\times 121\left(-1452\right)}}{2\times 121}
Pūrua 484.
x=\frac{-484±\sqrt{234256-484\left(-1452\right)}}{2\times 121}
Whakareatia -4 ki te 121.
x=\frac{-484±\sqrt{234256+702768}}{2\times 121}
Whakareatia -484 ki te -1452.
x=\frac{-484±\sqrt{937024}}{2\times 121}
Tāpiri 234256 ki te 702768.
x=\frac{-484±968}{2\times 121}
Tuhia te pūtakerua o te 937024.
x=\frac{-484±968}{242}
Whakareatia 2 ki te 121.
x=\frac{484}{242}
Nā, me whakaoti te whārite x=\frac{-484±968}{242} ina he tāpiri te ±. Tāpiri -484 ki te 968.
x=2
Whakawehe 484 ki te 242.
x=-\frac{1452}{242}
Nā, me whakaoti te whārite x=\frac{-484±968}{242} ina he tango te ±. Tango 968 mai i -484.
x=-6
Whakawehe -1452 ki te 242.
x=2 x=-6
Kua oti te whārite te whakatau.
121x^{2}+484x+160=1612
Whakamahia te āhuatanga tuaritanga hei whakarea te 11x+4 ki te 11x+40 ka whakakotahi i ngā kupu rite.
121x^{2}+484x=1612-160
Tangohia te 160 mai i ngā taha e rua.
121x^{2}+484x=1452
Tangohia te 160 i te 1612, ka 1452.
\frac{121x^{2}+484x}{121}=\frac{1452}{121}
Whakawehea ngā taha e rua ki te 121.
x^{2}+\frac{484}{121}x=\frac{1452}{121}
Mā te whakawehe ki te 121 ka wetekia te whakareanga ki te 121.
x^{2}+4x=\frac{1452}{121}
Whakawehe 484 ki te 121.
x^{2}+4x=12
Whakawehe 1452 ki te 121.
x^{2}+4x+2^{2}=12+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=12+4
Pūrua 2.
x^{2}+4x+4=16
Tāpiri 12 ki te 4.
\left(x+2\right)^{2}=16
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=4 x+2=-4
Whakarūnātia.
x=2 x=-6
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}