Whakaoti mō x
x=\frac{100y}{y+100}
y\neq -100
Whakaoti mō y
y=\frac{100x}{100-x}
x\neq 100
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(100-x\right)y\left(1+0\times 2x\right)=100x
Whakareatia te 0 ki te 0, ka 0.
\left(100-x\right)y\left(1+0x\right)=100x
Whakareatia te 0 ki te 2, ka 0.
\left(100-x\right)y\left(1+0\right)=100x
Ko te tau i whakarea ki te kore ka hua ko te kore.
\left(100-x\right)y\times 1=100x
Tāpirihia te 1 ki te 0, ka 1.
\left(100y-xy\right)\times 1=100x
Whakamahia te āhuatanga tohatoha hei whakarea te 100-x ki te y.
100y-xy=100x
Whakamahia te āhuatanga tohatoha hei whakarea te 100y-xy ki te 1.
100y-xy-100x=0
Tangohia te 100x mai i ngā taha e rua.
-xy-100x=-100y
Tangohia te 100y mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(-y-100\right)x=-100y
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(-y-100\right)x}{-y-100}=-\frac{100y}{-y-100}
Whakawehea ngā taha e rua ki te -y-100.
x=-\frac{100y}{-y-100}
Mā te whakawehe ki te -y-100 ka wetekia te whakareanga ki te -y-100.
x=\frac{100y}{y+100}
Whakawehe -100y ki te -y-100.
\left(100-x\right)y\left(1+0\times 2x\right)=100x
Whakareatia te 0 ki te 0, ka 0.
\left(100-x\right)y\left(1+0x\right)=100x
Whakareatia te 0 ki te 2, ka 0.
\left(100-x\right)y\left(1+0\right)=100x
Ko te tau i whakarea ki te kore ka hua ko te kore.
\left(100-x\right)y\times 1=100x
Tāpirihia te 1 ki te 0, ka 1.
\left(100y-xy\right)\times 1=100x
Whakamahia te āhuatanga tohatoha hei whakarea te 100-x ki te y.
100y-xy=100x
Whakamahia te āhuatanga tohatoha hei whakarea te 100y-xy ki te 1.
\left(100-x\right)y=100x
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\frac{\left(100-x\right)y}{100-x}=\frac{100x}{100-x}
Whakawehea ngā taha e rua ki te 100-x.
y=\frac{100x}{100-x}
Mā te whakawehe ki te 100-x ka wetekia te whakareanga ki te 100-x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}