Whakaoti mō y
y=-\frac{5000x}{\left(x-100\right)\left(x+50\right)}
x\neq -50\text{ and }x\neq 100
Whakaoti mō x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=-\frac{25\left(\sqrt{9y^{2}-200y+10000}-y+100\right)}{y}\text{; }x=-\frac{25\left(-\sqrt{9y^{2}-200y+10000}-y+100\right)}{y}\text{, }&y\neq 0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(100y-xy\right)\left(1+0.02x\right)=100x
Whakamahia te āhuatanga tohatoha hei whakarea te 100-x ki te y.
100y+yx-0.02x^{2}y=100x
Whakamahia te āhuatanga tuaritanga hei whakarea te 100y-xy ki te 1+0.02x ka whakakotahi i ngā kupu rite.
\left(100+x-0.02x^{2}\right)y=100x
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(-\frac{x^{2}}{50}+x+100\right)y=100x
He hanga arowhānui tō te whārite.
\frac{\left(-\frac{x^{2}}{50}+x+100\right)y}{-\frac{x^{2}}{50}+x+100}=\frac{100x}{-\frac{x^{2}}{50}+x+100}
Whakawehea ngā taha e rua ki te 100+x-0.02x^{2}.
y=\frac{100x}{-\frac{x^{2}}{50}+x+100}
Mā te whakawehe ki te 100+x-0.02x^{2} ka wetekia te whakareanga ki te 100+x-0.02x^{2}.
y=-\frac{5000x}{\left(x-100\right)\left(x+50\right)}
Whakawehe 100x ki te 100+x-0.02x^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}