Whakaoti mō x
x=80\sqrt{2}+180\approx 293.13708499
x=180-80\sqrt{2}\approx 66.86291501
Graph
Tohaina
Kua tāruatia ki te papatopenga
130000-1800x+5x^{2}=32000
Whakamahia te āhuatanga tuaritanga hei whakarea te 100-x ki te 1300-5x ka whakakotahi i ngā kupu rite.
130000-1800x+5x^{2}-32000=0
Tangohia te 32000 mai i ngā taha e rua.
98000-1800x+5x^{2}=0
Tangohia te 32000 i te 130000, ka 98000.
5x^{2}-1800x+98000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1800\right)±\sqrt{\left(-1800\right)^{2}-4\times 5\times 98000}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -1800 mō b, me 98000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1800\right)±\sqrt{3240000-4\times 5\times 98000}}{2\times 5}
Pūrua -1800.
x=\frac{-\left(-1800\right)±\sqrt{3240000-20\times 98000}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-1800\right)±\sqrt{3240000-1960000}}{2\times 5}
Whakareatia -20 ki te 98000.
x=\frac{-\left(-1800\right)±\sqrt{1280000}}{2\times 5}
Tāpiri 3240000 ki te -1960000.
x=\frac{-\left(-1800\right)±800\sqrt{2}}{2\times 5}
Tuhia te pūtakerua o te 1280000.
x=\frac{1800±800\sqrt{2}}{2\times 5}
Ko te tauaro o -1800 ko 1800.
x=\frac{1800±800\sqrt{2}}{10}
Whakareatia 2 ki te 5.
x=\frac{800\sqrt{2}+1800}{10}
Nā, me whakaoti te whārite x=\frac{1800±800\sqrt{2}}{10} ina he tāpiri te ±. Tāpiri 1800 ki te 800\sqrt{2}.
x=80\sqrt{2}+180
Whakawehe 1800+800\sqrt{2} ki te 10.
x=\frac{1800-800\sqrt{2}}{10}
Nā, me whakaoti te whārite x=\frac{1800±800\sqrt{2}}{10} ina he tango te ±. Tango 800\sqrt{2} mai i 1800.
x=180-80\sqrt{2}
Whakawehe 1800-800\sqrt{2} ki te 10.
x=80\sqrt{2}+180 x=180-80\sqrt{2}
Kua oti te whārite te whakatau.
130000-1800x+5x^{2}=32000
Whakamahia te āhuatanga tuaritanga hei whakarea te 100-x ki te 1300-5x ka whakakotahi i ngā kupu rite.
-1800x+5x^{2}=32000-130000
Tangohia te 130000 mai i ngā taha e rua.
-1800x+5x^{2}=-98000
Tangohia te 130000 i te 32000, ka -98000.
5x^{2}-1800x=-98000
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{5x^{2}-1800x}{5}=-\frac{98000}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{1800}{5}\right)x=-\frac{98000}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-360x=-\frac{98000}{5}
Whakawehe -1800 ki te 5.
x^{2}-360x=-19600
Whakawehe -98000 ki te 5.
x^{2}-360x+\left(-180\right)^{2}=-19600+\left(-180\right)^{2}
Whakawehea te -360, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -180. Nā, tāpiria te pūrua o te -180 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-360x+32400=-19600+32400
Pūrua -180.
x^{2}-360x+32400=12800
Tāpiri -19600 ki te 32400.
\left(x-180\right)^{2}=12800
Tauwehea x^{2}-360x+32400. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-180\right)^{2}}=\sqrt{12800}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-180=80\sqrt{2} x-180=-80\sqrt{2}
Whakarūnātia.
x=80\sqrt{2}+180 x=180-80\sqrt{2}
Me tāpiri 180 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}