Whakaoti mō x (complex solution)
x=2+14\sqrt{51}i\approx 2+99.979998i
x=-14\sqrt{51}i+2\approx 2-99.979998i
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(100+x\right)\left(100+x\right)\times 1=204x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\left(100+x\right)^{2}\times 1=204x
Whakareatia te 100+x ki te 100+x, ka \left(100+x\right)^{2}.
\left(10000+200x+x^{2}\right)\times 1=204x
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(100+x\right)^{2}.
10000+200x+x^{2}=204x
Whakamahia te āhuatanga tohatoha hei whakarea te 10000+200x+x^{2} ki te 1.
10000+200x+x^{2}-204x=0
Tangohia te 204x mai i ngā taha e rua.
10000-4x+x^{2}=0
Pahekotia te 200x me -204x, ka -4x.
x^{2}-4x+10000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 10000}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4 mō b, me 10000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 10000}}{2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-40000}}{2}
Whakareatia -4 ki te 10000.
x=\frac{-\left(-4\right)±\sqrt{-39984}}{2}
Tāpiri 16 ki te -40000.
x=\frac{-\left(-4\right)±28\sqrt{51}i}{2}
Tuhia te pūtakerua o te -39984.
x=\frac{4±28\sqrt{51}i}{2}
Ko te tauaro o -4 ko 4.
x=\frac{4+28\sqrt{51}i}{2}
Nā, me whakaoti te whārite x=\frac{4±28\sqrt{51}i}{2} ina he tāpiri te ±. Tāpiri 4 ki te 28i\sqrt{51}.
x=2+14\sqrt{51}i
Whakawehe 4+28i\sqrt{51} ki te 2.
x=\frac{-28\sqrt{51}i+4}{2}
Nā, me whakaoti te whārite x=\frac{4±28\sqrt{51}i}{2} ina he tango te ±. Tango 28i\sqrt{51} mai i 4.
x=-14\sqrt{51}i+2
Whakawehe 4-28i\sqrt{51} ki te 2.
x=2+14\sqrt{51}i x=-14\sqrt{51}i+2
Kua oti te whārite te whakatau.
\left(100+x\right)\left(100+x\right)\times 1=204x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\left(100+x\right)^{2}\times 1=204x
Whakareatia te 100+x ki te 100+x, ka \left(100+x\right)^{2}.
\left(10000+200x+x^{2}\right)\times 1=204x
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(100+x\right)^{2}.
10000+200x+x^{2}=204x
Whakamahia te āhuatanga tohatoha hei whakarea te 10000+200x+x^{2} ki te 1.
10000+200x+x^{2}-204x=0
Tangohia te 204x mai i ngā taha e rua.
10000-4x+x^{2}=0
Pahekotia te 200x me -204x, ka -4x.
-4x+x^{2}=-10000
Tangohia te 10000 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-4x=-10000
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-4x+\left(-2\right)^{2}=-10000+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-10000+4
Pūrua -2.
x^{2}-4x+4=-9996
Tāpiri -10000 ki te 4.
\left(x-2\right)^{2}=-9996
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-9996}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=14\sqrt{51}i x-2=-14\sqrt{51}i
Whakarūnātia.
x=2+14\sqrt{51}i x=-14\sqrt{51}i+2
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}