Aromātai
\frac{280}{3}\approx 93.333333333
Tauwehe
\frac{2 ^ {3} \cdot 5 \cdot 7}{3} = 93\frac{1}{3} = 93.33333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{186+89+85+100+100}{6}
Tāpirihia te 100 ki te 86, ka 186.
\frac{275+85+100+100}{6}
Tāpirihia te 186 ki te 89, ka 275.
\frac{360+100+100}{6}
Tāpirihia te 275 ki te 85, ka 360.
\frac{460+100}{6}
Tāpirihia te 360 ki te 100, ka 460.
\frac{560}{6}
Tāpirihia te 460 ki te 100, ka 560.
\frac{280}{3}
Whakahekea te hautanga \frac{560}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}