Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2000+300x-50x^{2}=1250
Whakamahia te āhuatanga tuaritanga hei whakarea te 10-x ki te 200+50x ka whakakotahi i ngā kupu rite.
2000+300x-50x^{2}-1250=0
Tangohia te 1250 mai i ngā taha e rua.
750+300x-50x^{2}=0
Tangohia te 1250 i te 2000, ka 750.
-50x^{2}+300x+750=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-300±\sqrt{300^{2}-4\left(-50\right)\times 750}}{2\left(-50\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -50 mō a, 300 mō b, me 750 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-300±\sqrt{90000-4\left(-50\right)\times 750}}{2\left(-50\right)}
Pūrua 300.
x=\frac{-300±\sqrt{90000+200\times 750}}{2\left(-50\right)}
Whakareatia -4 ki te -50.
x=\frac{-300±\sqrt{90000+150000}}{2\left(-50\right)}
Whakareatia 200 ki te 750.
x=\frac{-300±\sqrt{240000}}{2\left(-50\right)}
Tāpiri 90000 ki te 150000.
x=\frac{-300±200\sqrt{6}}{2\left(-50\right)}
Tuhia te pūtakerua o te 240000.
x=\frac{-300±200\sqrt{6}}{-100}
Whakareatia 2 ki te -50.
x=\frac{200\sqrt{6}-300}{-100}
Nā, me whakaoti te whārite x=\frac{-300±200\sqrt{6}}{-100} ina he tāpiri te ±. Tāpiri -300 ki te 200\sqrt{6}.
x=3-2\sqrt{6}
Whakawehe -300+200\sqrt{6} ki te -100.
x=\frac{-200\sqrt{6}-300}{-100}
Nā, me whakaoti te whārite x=\frac{-300±200\sqrt{6}}{-100} ina he tango te ±. Tango 200\sqrt{6} mai i -300.
x=2\sqrt{6}+3
Whakawehe -300-200\sqrt{6} ki te -100.
x=3-2\sqrt{6} x=2\sqrt{6}+3
Kua oti te whārite te whakatau.
2000+300x-50x^{2}=1250
Whakamahia te āhuatanga tuaritanga hei whakarea te 10-x ki te 200+50x ka whakakotahi i ngā kupu rite.
300x-50x^{2}=1250-2000
Tangohia te 2000 mai i ngā taha e rua.
300x-50x^{2}=-750
Tangohia te 2000 i te 1250, ka -750.
-50x^{2}+300x=-750
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-50x^{2}+300x}{-50}=-\frac{750}{-50}
Whakawehea ngā taha e rua ki te -50.
x^{2}+\frac{300}{-50}x=-\frac{750}{-50}
Mā te whakawehe ki te -50 ka wetekia te whakareanga ki te -50.
x^{2}-6x=-\frac{750}{-50}
Whakawehe 300 ki te -50.
x^{2}-6x=15
Whakawehe -750 ki te -50.
x^{2}-6x+\left(-3\right)^{2}=15+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=15+9
Pūrua -3.
x^{2}-6x+9=24
Tāpiri 15 ki te 9.
\left(x-3\right)^{2}=24
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{24}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=2\sqrt{6} x-3=-2\sqrt{6}
Whakarūnātia.
x=2\sqrt{6}+3 x=3-2\sqrt{6}
Me tāpiri 3 ki ngā taha e rua o te whārite.