Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1+3x+2x^{2}=1.32
Whakamahia te āhuatanga tuaritanga hei whakarea te 1+x ki te 1+2x ka whakakotahi i ngā kupu rite.
1+3x+2x^{2}-1.32=0
Tangohia te 1.32 mai i ngā taha e rua.
-0.32+3x+2x^{2}=0
Tangohia te 1.32 i te 1, ka -0.32.
2x^{2}+3x-0.32=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-0.32\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 3 mō b, me -0.32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-0.32\right)}}{2\times 2}
Pūrua 3.
x=\frac{-3±\sqrt{9-8\left(-0.32\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-3±\sqrt{9+2.56}}{2\times 2}
Whakareatia -8 ki te -0.32.
x=\frac{-3±\sqrt{11.56}}{2\times 2}
Tāpiri 9 ki te 2.56.
x=\frac{-3±\frac{17}{5}}{2\times 2}
Tuhia te pūtakerua o te 11.56.
x=\frac{-3±\frac{17}{5}}{4}
Whakareatia 2 ki te 2.
x=\frac{\frac{2}{5}}{4}
Nā, me whakaoti te whārite x=\frac{-3±\frac{17}{5}}{4} ina he tāpiri te ±. Tāpiri -3 ki te \frac{17}{5}.
x=\frac{1}{10}
Whakawehe \frac{2}{5} ki te 4.
x=-\frac{\frac{32}{5}}{4}
Nā, me whakaoti te whārite x=\frac{-3±\frac{17}{5}}{4} ina he tango te ±. Tango \frac{17}{5} mai i -3.
x=-\frac{8}{5}
Whakawehe -\frac{32}{5} ki te 4.
x=\frac{1}{10} x=-\frac{8}{5}
Kua oti te whārite te whakatau.
1+3x+2x^{2}=1.32
Whakamahia te āhuatanga tuaritanga hei whakarea te 1+x ki te 1+2x ka whakakotahi i ngā kupu rite.
3x+2x^{2}=1.32-1
Tangohia te 1 mai i ngā taha e rua.
3x+2x^{2}=0.32
Tangohia te 1 i te 1.32, ka 0.32.
2x^{2}+3x=0.32
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2x^{2}+3x}{2}=\frac{0.32}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{3}{2}x=\frac{0.32}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{3}{2}x=0.16
Whakawehe 0.32 ki te 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=0.16+\left(\frac{3}{4}\right)^{2}
Whakawehea te \frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{4}. Nā, tāpiria te pūrua o te \frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{2}x+\frac{9}{16}=0.16+\frac{9}{16}
Pūruatia \frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{289}{400}
Tāpiri 0.16 ki te \frac{9}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{4}\right)^{2}=\frac{289}{400}
Tauwehea x^{2}+\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{289}{400}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{4}=\frac{17}{20} x+\frac{3}{4}=-\frac{17}{20}
Whakarūnātia.
x=\frac{1}{10} x=-\frac{8}{5}
Me tango \frac{3}{4} mai i ngā taha e rua o te whārite.