Whakaoti mō x
x=\frac{3}{14}\approx 0.214285714
Graph
Tohaina
Kua tāruatia ki te papatopenga
4+11x+6x^{2}=\left(2-x\right)\left(5-6x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 1+2x ki te 4+3x ka whakakotahi i ngā kupu rite.
4+11x+6x^{2}=10-17x+6x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 2-x ki te 5-6x ka whakakotahi i ngā kupu rite.
4+11x+6x^{2}+17x=10+6x^{2}
Me tāpiri te 17x ki ngā taha e rua.
4+28x+6x^{2}=10+6x^{2}
Pahekotia te 11x me 17x, ka 28x.
4+28x+6x^{2}-6x^{2}=10
Tangohia te 6x^{2} mai i ngā taha e rua.
4+28x=10
Pahekotia te 6x^{2} me -6x^{2}, ka 0.
28x=10-4
Tangohia te 4 mai i ngā taha e rua.
28x=6
Tangohia te 4 i te 10, ka 6.
x=\frac{6}{28}
Whakawehea ngā taha e rua ki te 28.
x=\frac{3}{14}
Whakahekea te hautanga \frac{6}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}