(1+2+6+24+5 \times 4 \times 3 \times 2 \times 4+6 \times 5 \times 3 \times 2 \times 1) \% 6
Aromātai
\frac{2079}{50}=41.58
Tauwehe
\frac{3 ^ {3} \cdot 7 \cdot 11}{2 \cdot 5 ^ {2}} = 41\frac{29}{50} = 41.58
Tohaina
Kua tāruatia ki te papatopenga
\frac{1+2+6+24+20\times 3\times 2\times 4+30\times 3\times 2\times 1}{100}\times 6
Whakareatia te 5 ki te 4, ka 20. Whakareatia te 6 ki te 5, ka 30.
\frac{3+6+24+20\times 3\times 2\times 4+30\times 3\times 2\times 1}{100}\times 6
Tāpirihia te 1 ki te 2, ka 3.
\frac{9+24+20\times 3\times 2\times 4+30\times 3\times 2\times 1}{100}\times 6
Tāpirihia te 3 ki te 6, ka 9.
\frac{33+20\times 3\times 2\times 4+30\times 3\times 2\times 1}{100}\times 6
Tāpirihia te 9 ki te 24, ka 33.
\frac{33+60\times 2\times 4+30\times 3\times 2\times 1}{100}\times 6
Whakareatia te 20 ki te 3, ka 60.
\frac{33+120\times 4+30\times 3\times 2\times 1}{100}\times 6
Whakareatia te 60 ki te 2, ka 120.
\frac{33+480+30\times 3\times 2\times 1}{100}\times 6
Whakareatia te 120 ki te 4, ka 480.
\frac{513+30\times 3\times 2\times 1}{100}\times 6
Tāpirihia te 33 ki te 480, ka 513.
\frac{513+90\times 2\times 1}{100}\times 6
Whakareatia te 30 ki te 3, ka 90.
\frac{513+180\times 1}{100}\times 6
Whakareatia te 90 ki te 2, ka 180.
\frac{513+180}{100}\times 6
Whakareatia te 180 ki te 1, ka 180.
\frac{693}{100}\times 6
Tāpirihia te 513 ki te 180, ka 693.
\frac{693\times 6}{100}
Tuhia te \frac{693}{100}\times 6 hei hautanga kotahi.
\frac{4158}{100}
Whakareatia te 693 ki te 6, ka 4158.
\frac{2079}{50}
Whakahekea te hautanga \frac{4158}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}