Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-\left(0\times 4+x\right)x=45\times 10^{-4}x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-xx=45\times 10^{-4}x
Whakareatia te 0 ki te 4, ka 0.
-x^{2}=45\times 10^{-4}x
Whakareatia te x ki te x, ka x^{2}.
-x^{2}=45\times \frac{1}{10000}x
Tātaihia te 10 mā te pū o -4, kia riro ko \frac{1}{10000}.
-x^{2}=\frac{9}{2000}x
Whakareatia te 45 ki te \frac{1}{10000}, ka \frac{9}{2000}.
-x^{2}-\frac{9}{2000}x=0
Tangohia te \frac{9}{2000}x mai i ngā taha e rua.
x\left(-x-\frac{9}{2000}\right)=0
Tauwehea te x.
x=0 x=-\frac{9}{2000}
Hei kimi otinga whārite, me whakaoti te x=0 me te -x-\frac{9}{2000}=0.
x=-\frac{9}{2000}
Tē taea kia ōrite te tāupe x ki 0.
-\left(0\times 4+x\right)x=45\times 10^{-4}x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-xx=45\times 10^{-4}x
Whakareatia te 0 ki te 4, ka 0.
-x^{2}=45\times 10^{-4}x
Whakareatia te x ki te x, ka x^{2}.
-x^{2}=45\times \frac{1}{10000}x
Tātaihia te 10 mā te pū o -4, kia riro ko \frac{1}{10000}.
-x^{2}=\frac{9}{2000}x
Whakareatia te 45 ki te \frac{1}{10000}, ka \frac{9}{2000}.
-x^{2}-\frac{9}{2000}x=0
Tangohia te \frac{9}{2000}x mai i ngā taha e rua.
x=\frac{-\left(-\frac{9}{2000}\right)±\sqrt{\left(-\frac{9}{2000}\right)^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -\frac{9}{2000} mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{9}{2000}\right)±\frac{9}{2000}}{2\left(-1\right)}
Tuhia te pūtakerua o te \left(-\frac{9}{2000}\right)^{2}.
x=\frac{\frac{9}{2000}±\frac{9}{2000}}{2\left(-1\right)}
Ko te tauaro o -\frac{9}{2000} ko \frac{9}{2000}.
x=\frac{\frac{9}{2000}±\frac{9}{2000}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\frac{9}{1000}}{-2}
Nā, me whakaoti te whārite x=\frac{\frac{9}{2000}±\frac{9}{2000}}{-2} ina he tāpiri te ±. Tāpiri \frac{9}{2000} ki te \frac{9}{2000} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{9}{2000}
Whakawehe \frac{9}{1000} ki te -2.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{\frac{9}{2000}±\frac{9}{2000}}{-2} ina he tango te ±. Tango \frac{9}{2000} mai i \frac{9}{2000} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0
Whakawehe 0 ki te -2.
x=-\frac{9}{2000} x=0
Kua oti te whārite te whakatau.
x=-\frac{9}{2000}
Tē taea kia ōrite te tāupe x ki 0.
-\left(0\times 4+x\right)x=45\times 10^{-4}x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-xx=45\times 10^{-4}x
Whakareatia te 0 ki te 4, ka 0.
-x^{2}=45\times 10^{-4}x
Whakareatia te x ki te x, ka x^{2}.
-x^{2}=45\times \frac{1}{10000}x
Tātaihia te 10 mā te pū o -4, kia riro ko \frac{1}{10000}.
-x^{2}=\frac{9}{2000}x
Whakareatia te 45 ki te \frac{1}{10000}, ka \frac{9}{2000}.
-x^{2}-\frac{9}{2000}x=0
Tangohia te \frac{9}{2000}x mai i ngā taha e rua.
\frac{-x^{2}-\frac{9}{2000}x}{-1}=\frac{0}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{\frac{9}{2000}}{-1}\right)x=\frac{0}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+\frac{9}{2000}x=\frac{0}{-1}
Whakawehe -\frac{9}{2000} ki te -1.
x^{2}+\frac{9}{2000}x=0
Whakawehe 0 ki te -1.
x^{2}+\frac{9}{2000}x+\left(\frac{9}{4000}\right)^{2}=\left(\frac{9}{4000}\right)^{2}
Whakawehea te \frac{9}{2000}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{9}{4000}. Nā, tāpiria te pūrua o te \frac{9}{4000} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{9}{2000}x+\frac{81}{16000000}=\frac{81}{16000000}
Pūruatia \frac{9}{4000} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{9}{4000}\right)^{2}=\frac{81}{16000000}
Tauwehea x^{2}+\frac{9}{2000}x+\frac{81}{16000000}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{4000}\right)^{2}}=\sqrt{\frac{81}{16000000}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{9}{4000}=\frac{9}{4000} x+\frac{9}{4000}=-\frac{9}{4000}
Whakarūnātia.
x=0 x=-\frac{9}{2000}
Me tango \frac{9}{4000} mai i ngā taha e rua o te whārite.
x=-\frac{9}{2000}
Tē taea kia ōrite te tāupe x ki 0.