Whakaoti mō x
x=\frac{1}{4}=0.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5-3x-\left(-24\right)=8x+11-\left(3x-6\right)
Whakareatia te -4 ki te 6, ka -24.
-5-3x+24=8x+11-\left(3x-6\right)
Ko te tauaro o -24 ko 24.
-5-3x+24=8x+11-3x-\left(-6\right)
Hei kimi i te tauaro o 3x-6, kimihia te tauaro o ia taurangi.
-5-3x+24=8x+11-3x+6
Ko te tauaro o -6 ko 6.
-5-3x+24=5x+11+6
Pahekotia te 8x me -3x, ka 5x.
-5-3x+24=5x+17
Tāpirihia te 11 ki te 6, ka 17.
19-3x=5x+17
Tāpirihia te -5 ki te 24, ka 19.
19-3x-5x=17
Tangohia te 5x mai i ngā taha e rua.
19-8x=17
Pahekotia te -3x me -5x, ka -8x.
-8x=17-19
Tangohia te 19 mai i ngā taha e rua.
-8x=-2
Tangohia te 19 i te 17, ka -2.
x=\frac{-2}{-8}
Whakawehea ngā taha e rua ki te -8.
x=\frac{1}{4}
Whakahekea te hautanga \frac{-2}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}