Whakaoti mō x (complex solution)
x=-\sqrt{2}i-2\approx -2-1.414213562i
x=-2+\sqrt{2}i\approx -2+1.414213562i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}-4x-6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -4 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\left(-6\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-4\right)±\sqrt{16-24}}{2\left(-1\right)}
Whakareatia 4 ki te -6.
x=\frac{-\left(-4\right)±\sqrt{-8}}{2\left(-1\right)}
Tāpiri 16 ki te -24.
x=\frac{-\left(-4\right)±2\sqrt{2}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -8.
x=\frac{4±2\sqrt{2}i}{2\left(-1\right)}
Ko te tauaro o -4 ko 4.
x=\frac{4±2\sqrt{2}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{4+2\sqrt{2}i}{-2}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{2}i}{-2} ina he tāpiri te ±. Tāpiri 4 ki te 2i\sqrt{2}.
x=-\sqrt{2}i-2
Whakawehe 4+2i\sqrt{2} ki te -2.
x=\frac{-2\sqrt{2}i+4}{-2}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{2}i}{-2} ina he tango te ±. Tango 2i\sqrt{2} mai i 4.
x=-2+\sqrt{2}i
Whakawehe 4-2i\sqrt{2} ki te -2.
x=-\sqrt{2}i-2 x=-2+\sqrt{2}i
Kua oti te whārite te whakatau.
-x^{2}-4x-6=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}-4x-6-\left(-6\right)=-\left(-6\right)
Me tāpiri 6 ki ngā taha e rua o te whārite.
-x^{2}-4x=-\left(-6\right)
Mā te tango i te -6 i a ia ake anō ka toe ko te 0.
-x^{2}-4x=6
Tango -6 mai i 0.
\frac{-x^{2}-4x}{-1}=\frac{6}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{4}{-1}\right)x=\frac{6}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+4x=\frac{6}{-1}
Whakawehe -4 ki te -1.
x^{2}+4x=-6
Whakawehe 6 ki te -1.
x^{2}+4x+2^{2}=-6+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=-6+4
Pūrua 2.
x^{2}+4x+4=-2
Tāpiri -6 ki te 4.
\left(x+2\right)^{2}=-2
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=\sqrt{2}i x+2=-\sqrt{2}i
Whakarūnātia.
x=-2+\sqrt{2}i x=-\sqrt{2}i-2
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}