Aromātai
-\frac{133}{30}\approx -4.433333333
Tauwehe
-\frac{133}{30} = -4\frac{13}{30} = -4.433333333333334
Tohaina
Kua tāruatia ki te papatopenga
-4\left(\frac{8}{24}+\frac{9}{24}+\frac{2}{5}\right)
Ko te maha noa iti rawa atu o 3 me 8 ko 24. Me tahuri \frac{1}{3} me \frac{3}{8} ki te hautau me te tautūnga 24.
-4\left(\frac{8+9}{24}+\frac{2}{5}\right)
Tā te mea he rite te tauraro o \frac{8}{24} me \frac{9}{24}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-4\left(\frac{17}{24}+\frac{2}{5}\right)
Tāpirihia te 8 ki te 9, ka 17.
-4\left(\frac{85}{120}+\frac{48}{120}\right)
Ko te maha noa iti rawa atu o 24 me 5 ko 120. Me tahuri \frac{17}{24} me \frac{2}{5} ki te hautau me te tautūnga 120.
-4\times \frac{85+48}{120}
Tā te mea he rite te tauraro o \frac{85}{120} me \frac{48}{120}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-4\times \frac{133}{120}
Tāpirihia te 85 ki te 48, ka 133.
\frac{-4\times 133}{120}
Tuhia te -4\times \frac{133}{120} hei hautanga kotahi.
\frac{-532}{120}
Whakareatia te -4 ki te 133, ka -532.
-\frac{133}{30}
Whakahekea te hautanga \frac{-532}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}