Aromātai
2
Tauwehe
2
Tohaina
Kua tāruatia ki te papatopenga
\left(-6-\frac{\frac{2\times 15}{5}\times 17}{17}\right)\left(-2+\frac{6\times 2}{2}\right)\times 0-\left(\frac{-2\times 51}{17}-\left(-2-2\right)\right)
Whakawehea te -36 ki te 6, kia riro ko -6.
\left(-6-\frac{2\times 15}{5}\right)\left(-2+\frac{6\times 2}{2}\right)\times 0-\left(\frac{-2\times 51}{17}-\left(-2-2\right)\right)
Me whakakore te 17 me te 17.
\left(-6-\frac{30}{5}\right)\left(-2+\frac{6\times 2}{2}\right)\times 0-\left(\frac{-2\times 51}{17}-\left(-2-2\right)\right)
Whakareatia te 2 ki te 15, ka 30.
\left(-6-6\right)\left(-2+\frac{6\times 2}{2}\right)\times 0-\left(\frac{-2\times 51}{17}-\left(-2-2\right)\right)
Whakawehea te 30 ki te 5, kia riro ko 6.
-12\left(-2+\frac{6\times 2}{2}\right)\times 0-\left(\frac{-2\times 51}{17}-\left(-2-2\right)\right)
Tangohia te 6 i te -6, ka -12.
-12\left(-2+6\right)\times 0-\left(\frac{-2\times 51}{17}-\left(-2-2\right)\right)
Me whakakore te 2 me te 2.
-12\times 4\times 0-\left(\frac{-2\times 51}{17}-\left(-2-2\right)\right)
Tāpirihia te -2 ki te 6, ka 4.
-48\times 0-\left(\frac{-2\times 51}{17}-\left(-2-2\right)\right)
Whakareatia te -12 ki te 4, ka -48.
0-\left(\frac{-2\times 51}{17}-\left(-2-2\right)\right)
Whakareatia te -48 ki te 0, ka 0.
0-\left(\frac{-102}{17}-\left(-2-2\right)\right)
Whakareatia te -2 ki te 51, ka -102.
0-\left(-6-\left(-2-2\right)\right)
Whakawehea te -102 ki te 17, kia riro ko -6.
0-\left(-6-\left(-4\right)\right)
Tangohia te 2 i te -2, ka -4.
0-\left(-6+4\right)
Ko te tauaro o -4 ko 4.
0-\left(-2\right)
Tāpirihia te -6 ki te 4, ka -2.
0+2
Ko te tauaro o -2 ko 2.
2
Tāpirihia te 0 ki te 2, ka 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}