Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{-3\left(-\sqrt{5}+2\right)}{\left(-\sqrt{5}-2\right)\left(-\sqrt{5}+2\right)}
Whakangāwaritia te tauraro o \frac{-3}{-\sqrt{5}-2} mā te whakarea i te taurunga me te tauraro ki te -\sqrt{5}+2.
\frac{-3\left(-\sqrt{5}+2\right)}{\left(-\sqrt{5}\right)^{2}-2^{2}}
Whakaarohia te \left(-\sqrt{5}-2\right)\left(-\sqrt{5}+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-3\left(-\sqrt{5}+2\right)}{\left(\sqrt{5}\right)^{2}-2^{2}}
Tātaihia te -\sqrt{5} mā te pū o 2, kia riro ko \left(\sqrt{5}\right)^{2}.
\frac{-3\left(-\sqrt{5}+2\right)}{\left(\sqrt{5}\right)^{2}-4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{-3\left(-\sqrt{5}+2\right)}{5-4}
Ko te pūrua o \sqrt{5} ko 5.
\frac{-3\left(-\sqrt{5}+2\right)}{1}
Tangohia te 4 i te 5, ka 1.
-3\left(-\sqrt{5}+2\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
-3\left(-\sqrt{5}\right)-6
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te -\sqrt{5}+2.
3\sqrt{5}-6
Whakareatia te -3 ki te -1, ka 3.