Aromātai
3\left(\sqrt{5}-2\right)\approx 0.708203932
Tohaina
Kua tāruatia ki te papatopenga
\frac{-3\left(-\sqrt{5}+2\right)}{\left(-\sqrt{5}-2\right)\left(-\sqrt{5}+2\right)}
Whakangāwaritia te tauraro o \frac{-3}{-\sqrt{5}-2} mā te whakarea i te taurunga me te tauraro ki te -\sqrt{5}+2.
\frac{-3\left(-\sqrt{5}+2\right)}{\left(-\sqrt{5}\right)^{2}-2^{2}}
Whakaarohia te \left(-\sqrt{5}-2\right)\left(-\sqrt{5}+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-3\left(-\sqrt{5}+2\right)}{\left(\sqrt{5}\right)^{2}-2^{2}}
Tātaihia te -\sqrt{5} mā te pū o 2, kia riro ko \left(\sqrt{5}\right)^{2}.
\frac{-3\left(-\sqrt{5}+2\right)}{\left(\sqrt{5}\right)^{2}-4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{-3\left(-\sqrt{5}+2\right)}{5-4}
Ko te pūrua o \sqrt{5} ko 5.
\frac{-3\left(-\sqrt{5}+2\right)}{1}
Tangohia te 4 i te 5, ka 1.
-3\left(-\sqrt{5}+2\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
-3\left(-\sqrt{5}\right)-6
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te -\sqrt{5}+2.
3\sqrt{5}-6
Whakareatia te -3 ki te -1, ka 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}