((5+36+36+38+4+45) \times 3+45-36+36+19 \times 135) \div (22+135=
Aromātai
\frac{3102}{157}\approx 19.757961783
Tauwehe
\frac{2 \cdot 3 \cdot 11 \cdot 47}{157} = 19\frac{119}{157} = 19.75796178343949
Pātaitai
5 raruraru e ōrite ana ki:
((5+36+36+38+4+45) \times 3+45-36+36+19 \times 135) \div (22+135=
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(41+36+38+4+45\right)\times 3+45-36+36+19\times 135}{22+135}
Tāpirihia te 5 ki te 36, ka 41.
\frac{\left(77+38+4+45\right)\times 3+45-36+36+19\times 135}{22+135}
Tāpirihia te 41 ki te 36, ka 77.
\frac{\left(115+4+45\right)\times 3+45-36+36+19\times 135}{22+135}
Tāpirihia te 77 ki te 38, ka 115.
\frac{\left(119+45\right)\times 3+45-36+36+19\times 135}{22+135}
Tāpirihia te 115 ki te 4, ka 119.
\frac{164\times 3+45-36+36+19\times 135}{22+135}
Tāpirihia te 119 ki te 45, ka 164.
\frac{492+45-36+36+19\times 135}{22+135}
Whakareatia te 164 ki te 3, ka 492.
\frac{537-36+36+19\times 135}{22+135}
Tāpirihia te 492 ki te 45, ka 537.
\frac{501+36+19\times 135}{22+135}
Tangohia te 36 i te 537, ka 501.
\frac{537+19\times 135}{22+135}
Tāpirihia te 501 ki te 36, ka 537.
\frac{537+2565}{22+135}
Whakareatia te 19 ki te 135, ka 2565.
\frac{3102}{22+135}
Tāpirihia te 537 ki te 2565, ka 3102.
\frac{3102}{157}
Tāpirihia te 22 ki te 135, ka 157.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}