Aromātai
136.5
Tauwehe
\frac{3 \cdot 7 \cdot 13}{2} = 136\frac{1}{2} = 136.5
Tohaina
Kua tāruatia ki te papatopenga
3250\times 0.6\times 0.105\times \frac{8}{12}
Whakareatia te 5 ki te 650, ka 3250.
1950\times 0.105\times \frac{8}{12}
Whakareatia te 3250 ki te 0.6, ka 1950.
204.75\times \frac{8}{12}
Whakareatia te 1950 ki te 0.105, ka 204.75.
204.75\times \frac{2}{3}
Whakahekea te hautanga \frac{8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{819}{4}\times \frac{2}{3}
Me tahuri ki tau ā-ira 204.75 ki te hautau \frac{20475}{100}. Whakahekea te hautanga \frac{20475}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{819\times 2}{4\times 3}
Me whakarea te \frac{819}{4} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1638}{12}
Mahia ngā whakarea i roto i te hautanga \frac{819\times 2}{4\times 3}.
\frac{273}{2}
Whakahekea te hautanga \frac{1638}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}