Aromātai
\text{Indeterminate}
Tohaina
Kua tāruatia ki te papatopenga
\frac{-10}{\sqrt{8-11}-3}
Tāpirihia te -11 ki te 1, ka -10.
\frac{-10}{\sqrt{-3}-3}
Tangohia te 11 i te 8, ka -3.
\frac{-10\left(\sqrt{-3}+3\right)}{\left(\sqrt{-3}-3\right)\left(\sqrt{-3}+3\right)}
Whakangāwaritia te tauraro o \frac{-10}{\sqrt{-3}-3} mā te whakarea i te taurunga me te tauraro ki te \sqrt{-3}+3.
\frac{-10\left(\sqrt{-3}+3\right)}{\left(\sqrt{-3}\right)^{2}-3^{2}}
Whakaarohia te \left(\sqrt{-3}-3\right)\left(\sqrt{-3}+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-10\left(\sqrt{-3}+3\right)}{-3-9}
Pūrua \sqrt{-3}. Pūrua 3.
\frac{-10\left(\sqrt{-3}+3\right)}{-12}
Tangohia te 9 i te -3, ka -12.
\frac{5}{6}\left(\sqrt{-3}+3\right)
Whakawehea te -10\left(\sqrt{-3}+3\right) ki te -12, kia riro ko \frac{5}{6}\left(\sqrt{-3}+3\right).
\frac{5}{6}\sqrt{-3}+\frac{5}{6}\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{5}{6} ki te \sqrt{-3}+3.
\frac{5}{6}\sqrt{-3}+\frac{5\times 3}{6}
Tuhia te \frac{5}{6}\times 3 hei hautanga kotahi.
\frac{5}{6}\sqrt{-3}+\frac{15}{6}
Whakareatia te 5 ki te 3, ka 15.
\frac{5}{6}\sqrt{-3}+\frac{5}{2}
Whakahekea te hautanga \frac{15}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}