Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{-10}{\sqrt{8-11}-3}
Tāpirihia te -11 ki te 1, ka -10.
\frac{-10}{\sqrt{-3}-3}
Tangohia te 11 i te 8, ka -3.
\frac{-10\left(\sqrt{-3}+3\right)}{\left(\sqrt{-3}-3\right)\left(\sqrt{-3}+3\right)}
Whakangāwaritia te tauraro o \frac{-10}{\sqrt{-3}-3} mā te whakarea i te taurunga me te tauraro ki te \sqrt{-3}+3.
\frac{-10\left(\sqrt{-3}+3\right)}{\left(\sqrt{-3}\right)^{2}-3^{2}}
Whakaarohia te \left(\sqrt{-3}-3\right)\left(\sqrt{-3}+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-10\left(\sqrt{-3}+3\right)}{-3-9}
Pūrua \sqrt{-3}. Pūrua 3.
\frac{-10\left(\sqrt{-3}+3\right)}{-12}
Tangohia te 9 i te -3, ka -12.
\frac{5}{6}\left(\sqrt{-3}+3\right)
Whakawehea te -10\left(\sqrt{-3}+3\right) ki te -12, kia riro ko \frac{5}{6}\left(\sqrt{-3}+3\right).
\frac{5}{6}\sqrt{-3}+\frac{5}{6}\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{5}{6} ki te \sqrt{-3}+3.
\frac{5}{6}\sqrt{-3}+\frac{5\times 3}{6}
Tuhia te \frac{5}{6}\times 3 hei hautanga kotahi.
\frac{5}{6}\sqrt{-3}+\frac{15}{6}
Whakareatia te 5 ki te 3, ka 15.
\frac{5}{6}\sqrt{-3}+\frac{5}{2}
Whakahekea te hautanga \frac{15}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.