((((25000 \times \left( 13+18 \right) +250000+500000-350000-750000) \div 047)) \div 10
Aromātai
\frac{42500}{47}\approx 904.255319149
Tauwehe
\frac{2 ^ {2} \cdot 5 ^ {4} \cdot 17}{47} = 904\frac{12}{47} = 904.2553191489362
Tohaina
Kua tāruatia ki te papatopenga
\frac{25000\left(13+18\right)+250000+500000-350000-750000}{47\times 10}
Tuhia te \frac{\frac{25000\left(13+18\right)+250000+500000-350000-750000}{47}}{10} hei hautanga kotahi.
\frac{25000\times 31+250000+500000-350000-750000}{47\times 10}
Tāpirihia te 13 ki te 18, ka 31.
\frac{775000+250000+500000-350000-750000}{47\times 10}
Whakareatia te 25000 ki te 31, ka 775000.
\frac{1025000+500000-350000-750000}{47\times 10}
Tāpirihia te 775000 ki te 250000, ka 1025000.
\frac{1525000-350000-750000}{47\times 10}
Tāpirihia te 1025000 ki te 500000, ka 1525000.
\frac{1175000-750000}{47\times 10}
Tangohia te 350000 i te 1525000, ka 1175000.
\frac{425000}{47\times 10}
Tangohia te 750000 i te 1175000, ka 425000.
\frac{425000}{470}
Whakareatia te 47 ki te 10, ka 470.
\frac{42500}{47}
Whakahekea te hautanga \frac{425000}{470} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}