Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{2}-1+4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1+2\sqrt{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2\sqrt{2}-1\right)^{2}.
\sqrt{2}-1+4\times 2-4\sqrt{2}+1+2\sqrt{2}
Ko te pūrua o \sqrt{2} ko 2.
\sqrt{2}-1+8-4\sqrt{2}+1+2\sqrt{2}
Whakareatia te 4 ki te 2, ka 8.
\sqrt{2}-1+9-4\sqrt{2}+2\sqrt{2}
Tāpirihia te 8 ki te 1, ka 9.
\sqrt{2}+8-4\sqrt{2}+2\sqrt{2}
Tāpirihia te -1 ki te 9, ka 8.
-3\sqrt{2}+8+2\sqrt{2}
Pahekotia te \sqrt{2} me -4\sqrt{2}, ka -3\sqrt{2}.
-\sqrt{2}+8
Pahekotia te -3\sqrt{2} me 2\sqrt{2}, ka -\sqrt{2}.