Whakaoti mō y
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
y^{2}-12y+36-\left(y+4\right)^{2}=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-6\right)^{2}.
y^{2}-12y+36-\left(y^{2}+8y+16\right)=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(y+4\right)^{2}.
y^{2}-12y+36-y^{2}-8y-16=0
Hei kimi i te tauaro o y^{2}+8y+16, kimihia te tauaro o ia taurangi.
-12y+36-8y-16=0
Pahekotia te y^{2} me -y^{2}, ka 0.
-20y+36-16=0
Pahekotia te -12y me -8y, ka -20y.
-20y+20=0
Tangohia te 16 i te 36, ka 20.
-20y=-20
Tangohia te 20 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y=\frac{-20}{-20}
Whakawehea ngā taha e rua ki te -20.
y=1
Whakawehea te -20 ki te -20, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}