Whakaoti mō y
y=4
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
y^{2}-2y+1-3\left(y-1\right)=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-1\right)^{2}.
y^{2}-2y+1-3y+3=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te y-1.
y^{2}-5y+1+3=0
Pahekotia te -2y me -3y, ka -5y.
y^{2}-5y+4=0
Tāpirihia te 1 ki te 3, ka 4.
a+b=-5 ab=4
Hei whakaoti i te whārite, whakatauwehea te y^{2}-5y+4 mā te whakamahi i te tātai y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-4 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(y-4\right)\left(y-1\right)
Me tuhi anō te kīanga whakatauwehe \left(y+a\right)\left(y+b\right) mā ngā uara i tātaihia.
y=4 y=1
Hei kimi otinga whārite, me whakaoti te y-4=0 me te y-1=0.
y^{2}-2y+1-3\left(y-1\right)=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-1\right)^{2}.
y^{2}-2y+1-3y+3=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te y-1.
y^{2}-5y+1+3=0
Pahekotia te -2y me -3y, ka -5y.
y^{2}-5y+4=0
Tāpirihia te 1 ki te 3, ka 4.
a+b=-5 ab=1\times 4=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei y^{2}+ay+by+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-4 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(y^{2}-4y\right)+\left(-y+4\right)
Tuhia anō te y^{2}-5y+4 hei \left(y^{2}-4y\right)+\left(-y+4\right).
y\left(y-4\right)-\left(y-4\right)
Tauwehea te y i te tuatahi me te -1 i te rōpū tuarua.
\left(y-4\right)\left(y-1\right)
Whakatauwehea atu te kīanga pātahi y-4 mā te whakamahi i te āhuatanga tātai tohatoha.
y=4 y=1
Hei kimi otinga whārite, me whakaoti te y-4=0 me te y-1=0.
y^{2}-2y+1-3\left(y-1\right)=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-1\right)^{2}.
y^{2}-2y+1-3y+3=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te y-1.
y^{2}-5y+1+3=0
Pahekotia te -2y me -3y, ka -5y.
y^{2}-5y+4=0
Tāpirihia te 1 ki te 3, ka 4.
y=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -5 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Pūrua -5.
y=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Whakareatia -4 ki te 4.
y=\frac{-\left(-5\right)±\sqrt{9}}{2}
Tāpiri 25 ki te -16.
y=\frac{-\left(-5\right)±3}{2}
Tuhia te pūtakerua o te 9.
y=\frac{5±3}{2}
Ko te tauaro o -5 ko 5.
y=\frac{8}{2}
Nā, me whakaoti te whārite y=\frac{5±3}{2} ina he tāpiri te ±. Tāpiri 5 ki te 3.
y=4
Whakawehe 8 ki te 2.
y=\frac{2}{2}
Nā, me whakaoti te whārite y=\frac{5±3}{2} ina he tango te ±. Tango 3 mai i 5.
y=1
Whakawehe 2 ki te 2.
y=4 y=1
Kua oti te whārite te whakatau.
y^{2}-2y+1-3\left(y-1\right)=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-1\right)^{2}.
y^{2}-2y+1-3y+3=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te y-1.
y^{2}-5y+1+3=0
Pahekotia te -2y me -3y, ka -5y.
y^{2}-5y+4=0
Tāpirihia te 1 ki te 3, ka 4.
y^{2}-5y=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y^{2}-5y+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-5y+\frac{25}{4}=-4+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-5y+\frac{25}{4}=\frac{9}{4}
Tāpiri -4 ki te \frac{25}{4}.
\left(y-\frac{5}{2}\right)^{2}=\frac{9}{4}
Tauwehea y^{2}-5y+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{5}{2}=\frac{3}{2} y-\frac{5}{2}=-\frac{3}{2}
Whakarūnātia.
y=4 y=1
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}