Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}-2y+1+2y\left(1-y\right)=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-1\right)^{2}.
y^{2}-2y+1+2y-2y^{2}=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2y ki te 1-y.
y^{2}+1-2y^{2}=0
Pahekotia te -2y me 2y, ka 0.
-y^{2}+1=0
Pahekotia te y^{2} me -2y^{2}, ka -y^{2}.
-y^{2}=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y^{2}=\frac{-1}{-1}
Whakawehea ngā taha e rua ki te -1.
y^{2}=1
Whakawehea te -1 ki te -1, kia riro ko 1.
y=1 y=-1
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y^{2}-2y+1+2y\left(1-y\right)=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-1\right)^{2}.
y^{2}-2y+1+2y-2y^{2}=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2y ki te 1-y.
y^{2}+1-2y^{2}=0
Pahekotia te -2y me 2y, ka 0.
-y^{2}+1=0
Pahekotia te y^{2} me -2y^{2}, ka -y^{2}.
y=\frac{0±\sqrt{0^{2}-4\left(-1\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-1\right)}}{2\left(-1\right)}
Pūrua 0.
y=\frac{0±\sqrt{4}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
y=\frac{0±2}{2\left(-1\right)}
Tuhia te pūtakerua o te 4.
y=\frac{0±2}{-2}
Whakareatia 2 ki te -1.
y=-1
Nā, me whakaoti te whārite y=\frac{0±2}{-2} ina he tāpiri te ±. Whakawehe 2 ki te -2.
y=1
Nā, me whakaoti te whārite y=\frac{0±2}{-2} ina he tango te ±. Whakawehe -2 ki te -2.
y=-1 y=1
Kua oti te whārite te whakatau.