Aromātai
-\frac{4y^{22}}{27x^{8}}
Whakaroha
-\frac{4y^{22}}{27x^{8}}
Tohaina
Kua tāruatia ki te papatopenga
y^{3}x^{2}\left(-3\right)^{-3}\left(x^{2}\right)^{-3}\left(y^{-3}\right)^{-3}\times \left(2x^{-2}y^{5}\right)^{2}
Whakarohaina te \left(-3x^{2}y^{-3}\right)^{-3}.
y^{3}x^{2}\left(-3\right)^{-3}x^{-6}\left(y^{-3}\right)^{-3}\times \left(2x^{-2}y^{5}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -3 kia riro ai te -6.
y^{3}x^{2}\left(-3\right)^{-3}x^{-6}y^{9}\times \left(2x^{-2}y^{5}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -3 me te -3 kia riro ai te 9.
y^{3}x^{2}\left(-\frac{1}{27}\right)x^{-6}y^{9}\times \left(2x^{-2}y^{5}\right)^{2}
Tātaihia te -3 mā te pū o -3, kia riro ko -\frac{1}{27}.
y^{3}x^{-4}\left(-\frac{1}{27}\right)y^{9}\times \left(2x^{-2}y^{5}\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te -6 kia riro ai te -4.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times \left(2x^{-2}y^{5}\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 9 kia riro ai te 12.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 2^{2}\left(x^{-2}\right)^{2}\left(y^{5}\right)^{2}
Whakarohaina te \left(2x^{-2}y^{5}\right)^{2}.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 2^{2}x^{-4}\left(y^{5}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -2 me te 2 kia riro ai te -4.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 2^{2}x^{-4}y^{10}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 5 me te 2 kia riro ai te 10.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 4x^{-4}y^{10}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
y^{12}x^{-4}\left(-\frac{4}{27}\right)x^{-4}y^{10}
Whakareatia te -\frac{1}{27} ki te 4, ka -\frac{4}{27}.
y^{12}x^{-8}\left(-\frac{4}{27}\right)y^{10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -4 me te -4 kia riro ai te -8.
y^{22}x^{-8}\left(-\frac{4}{27}\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 12 me te 10 kia riro ai te 22.
y^{3}x^{2}\left(-3\right)^{-3}\left(x^{2}\right)^{-3}\left(y^{-3}\right)^{-3}\times \left(2x^{-2}y^{5}\right)^{2}
Whakarohaina te \left(-3x^{2}y^{-3}\right)^{-3}.
y^{3}x^{2}\left(-3\right)^{-3}x^{-6}\left(y^{-3}\right)^{-3}\times \left(2x^{-2}y^{5}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -3 kia riro ai te -6.
y^{3}x^{2}\left(-3\right)^{-3}x^{-6}y^{9}\times \left(2x^{-2}y^{5}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -3 me te -3 kia riro ai te 9.
y^{3}x^{2}\left(-\frac{1}{27}\right)x^{-6}y^{9}\times \left(2x^{-2}y^{5}\right)^{2}
Tātaihia te -3 mā te pū o -3, kia riro ko -\frac{1}{27}.
y^{3}x^{-4}\left(-\frac{1}{27}\right)y^{9}\times \left(2x^{-2}y^{5}\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te -6 kia riro ai te -4.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times \left(2x^{-2}y^{5}\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 9 kia riro ai te 12.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 2^{2}\left(x^{-2}\right)^{2}\left(y^{5}\right)^{2}
Whakarohaina te \left(2x^{-2}y^{5}\right)^{2}.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 2^{2}x^{-4}\left(y^{5}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -2 me te 2 kia riro ai te -4.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 2^{2}x^{-4}y^{10}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 5 me te 2 kia riro ai te 10.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 4x^{-4}y^{10}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
y^{12}x^{-4}\left(-\frac{4}{27}\right)x^{-4}y^{10}
Whakareatia te -\frac{1}{27} ki te 4, ka -\frac{4}{27}.
y^{12}x^{-8}\left(-\frac{4}{27}\right)y^{10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -4 me te -4 kia riro ai te -8.
y^{22}x^{-8}\left(-\frac{4}{27}\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 12 me te 10 kia riro ai te 22.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}