Whakaoti mō y
y=3
y=-7
Graph
Tohaina
Kua tāruatia ki te papatopenga
y^{2}+4y+4=25
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(y+2\right)^{2}.
y^{2}+4y+4-25=0
Tangohia te 25 mai i ngā taha e rua.
y^{2}+4y-21=0
Tangohia te 25 i te 4, ka -21.
a+b=4 ab=-21
Hei whakaoti i te whārite, whakatauwehea te y^{2}+4y-21 mā te whakamahi i te tātai y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,21 -3,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -21.
-1+21=20 -3+7=4
Tātaihia te tapeke mō ia takirua.
a=-3 b=7
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(y-3\right)\left(y+7\right)
Me tuhi anō te kīanga whakatauwehe \left(y+a\right)\left(y+b\right) mā ngā uara i tātaihia.
y=3 y=-7
Hei kimi otinga whārite, me whakaoti te y-3=0 me te y+7=0.
y^{2}+4y+4=25
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(y+2\right)^{2}.
y^{2}+4y+4-25=0
Tangohia te 25 mai i ngā taha e rua.
y^{2}+4y-21=0
Tangohia te 25 i te 4, ka -21.
a+b=4 ab=1\left(-21\right)=-21
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei y^{2}+ay+by-21. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,21 -3,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -21.
-1+21=20 -3+7=4
Tātaihia te tapeke mō ia takirua.
a=-3 b=7
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(y^{2}-3y\right)+\left(7y-21\right)
Tuhia anō te y^{2}+4y-21 hei \left(y^{2}-3y\right)+\left(7y-21\right).
y\left(y-3\right)+7\left(y-3\right)
Tauwehea te y i te tuatahi me te 7 i te rōpū tuarua.
\left(y-3\right)\left(y+7\right)
Whakatauwehea atu te kīanga pātahi y-3 mā te whakamahi i te āhuatanga tātai tohatoha.
y=3 y=-7
Hei kimi otinga whārite, me whakaoti te y-3=0 me te y+7=0.
y^{2}+4y+4=25
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(y+2\right)^{2}.
y^{2}+4y+4-25=0
Tangohia te 25 mai i ngā taha e rua.
y^{2}+4y-21=0
Tangohia te 25 i te 4, ka -21.
y=\frac{-4±\sqrt{4^{2}-4\left(-21\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 4 mō b, me -21 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-4±\sqrt{16-4\left(-21\right)}}{2}
Pūrua 4.
y=\frac{-4±\sqrt{16+84}}{2}
Whakareatia -4 ki te -21.
y=\frac{-4±\sqrt{100}}{2}
Tāpiri 16 ki te 84.
y=\frac{-4±10}{2}
Tuhia te pūtakerua o te 100.
y=\frac{6}{2}
Nā, me whakaoti te whārite y=\frac{-4±10}{2} ina he tāpiri te ±. Tāpiri -4 ki te 10.
y=3
Whakawehe 6 ki te 2.
y=-\frac{14}{2}
Nā, me whakaoti te whārite y=\frac{-4±10}{2} ina he tango te ±. Tango 10 mai i -4.
y=-7
Whakawehe -14 ki te 2.
y=3 y=-7
Kua oti te whārite te whakatau.
\sqrt{\left(y+2\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+2=5 y+2=-5
Whakarūnātia.
y=3 y=-7
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}